Lough Swiny East GwD. Summary of Initial Characterisation	Lo	ough S	Swilly	East	GWB:	Summary	of	[nitial	Chara	cterisation
---	----	--------	--------	------	------	---------	----	---------	-------	-------------

Hydrometric Area		Associated surface water bodies	Associated terrestrial ecosystems	Area (km²)						
Locarrationay		Binans : Ashawaal Burnfaat Cashalnaaar Crana	Dumfaat Cashahaaan Crana North Inidemum Casat and							
Hydrometric Area 39		Glashagh- Crana Mill Owenhov Owenerk	Lough Swilly (O'Riain 2004)	376						
		Owennasop, Skeoge.	Lough Swiny (O Icluin, 2001)	570						
Do	onegal Co. Co.	Streams: 536 unnamed streams								
		Lakes: Crunlough, Fad, Mamore, Shivnagh, Doo,								
		Anvrickabrack, Mill Pond, Mintraghs.								
1	Fopography	This GWB (Figure 1) comprises west Inishowen. The en	astern and southern boundaries are to	pographic divides						
		(Hydrometric Areas 01 and 40). The western boundary is	s constrained by circuitous coastline (Lough Swilly) and						
		the south-western boundary represents a change in aqu	the bady to more mountainous up	om low-lying, flat						
		600 mAOD along the eastern boundary (Slieve Snaght)	Surface water flows to the west to dis	charge into Lough						
		Swilly Swilly								
	Aquifer type(s)	The GWB is dominated by Pl: Poor aquifer which is get	nerally unproductive except for local	zones (82%), with						
	1 11 ()	an area of Pu: Poor aquifer, generally unproductive - c.	50 km ² of SW-NE bands trending ac	ross the middle of						
		the GWB. Two areas of Ll: Locally important aquifer, m	noderately productive only in local zo	nes, are present in						
		the body (c.7 and 5 km ²), as well as a narrow band adjace	ent to the Pu aquifer.							
	Main aquifer	Precambrian Quartzites, Gneisses & Schists is the main	rock group in this GWB (95.88%), v	vith small areas of						
	lithologies	Precambrian Marbles (3.65%), and a small area of Gra	nites and other Igneous Intrusive roo	eks is also present						
		(0.43%) in the north west. Refer to Table 1 for more deta	ils.							
	Key structures	The rocks in this part of Donegal have been significantly	deformed, resulting in a large numbe	r of approximately						
		SW-NE faults (e.g. Leannan and Belshade Faults) and the rock succession dipping between 40-80° to the SW.								
		Inishowen Peninsula to north of Letterkenny Town	s, the largest of which extend from	the initiate of the						
	Kev properties	Violda from the 5 available Presembrian Quartzitae Cra	icase and Schiste (D1/Du) walls range	from 5 2200 m^3/d						
		The highest yield is considered to be anomalous for this	area (<i>pers_comm_P_Dullea_drilling</i>	$10111 \ 3-2200 \ 111 \ 7d.$						
		wells have $<30 \text{ m}^3$ /d. Specific capacities of 0.45 and 440 m ³ /d/m have been recorded, the higher								
		corresponds to the highest yielding well. Although there are no transmissivity data for the GWB, they								
s		to be low for all rock types, with the possibility of his	gher values in faulted zones, especia	lly in the coarser-						
ifer		grained rocks (quartzites, gneisses and granites). Typical specific dry weather flows for this roc								
inb		Donegal are low (0.41-1.1 l/s/km ² at 5 stations), indicatin	ng that this aquifer does not make a si	gnificant baseflow						
V p		contribution to streamflow. Storativity is also expected to	be low.							
an		Although the Precambrian Marbles group is also catego	rised as a poorly productive aquifer,	it is considered to						
gy		be slightly more productive (Ll) than the Quartzites, Gn	data are available							
solo		Donegal. Yields in the Raphoe and Manor Cunningham GWBs range from 2-1090 r								
Ğ		$202 \text{ m}^3/d$ (15 wells) Transmissivity values of 11 and 12	m^2/d have been calculated for the N	Ann an average of						
		WSS (Manor Cunningham GWB) and 7 specific capa	city values are available 0.1 0.4 (1831010000 (1820000) 1820000						
		$165 \text{ m}^3/\text{d/m}$). The same rocks also supply the Culdar	ff WSS (East Inishowen GWB): y	rield of 523 m^3/d ,						
		transmissivity of c.110 m ² /d, and specific capacity of 12	26 m ³ /d/m. Karstification may also or	cur in these rocks						
		e.g. the Pollnapaste Cave, west Donegal (Parkes et al, 2	2000), and a 'fractured cavity' record	ded in the Culdaff						
		WSS borehole log, which possibly reflects some degree	of solution. Overall, the data highlight	ght that yields and						
		transmissivities (calculated and implied) are variable and	that there are productive zones in th	ese rocks that may						
		have been enhanced by karstification. Although better	than the PI/Pu aquifers, transmissiv	ity and storativity						
		values are still thought to be relatively low.		1.1 1 1 1						
		All of the 5 available groundwater levels are 0-15 m be	low ground level, with $4 < 3$ mbgl. A	lthough levels are						
		Descentible in Amile Charten Descent CHDS, Cold & CHDS Streep,								
		(Precambrian Aquifer Chapter; Donegal GWPS; Culdaj	Chapter; Donegal GWPS; Culdaff WSS Source Report; Magherabeg/Veagh WSS Source							
	Thickness	Most groundwater flux is expected to be in the uppermos	t part of the aquifer comprising a bro	kan and weathered						
	1 mckness	zone typically less than 3 m thick, a zone of interconnected fissuring c.10 m thick, and a zone of isolated noorly								
		connected fissuring typically less than 150 m. Deeper water strikes are noted at 40, 46 and 63 mbgl in 3 wells.								
	Lithologies	The GWB is mainly covered by till (41%) and peat (34%)), with approximately 12% recorded	as outcrop/shallow						
50	0	rock.	· · · · · · · · · · · · · · · · · · ·	-						
yin	Thickness	Subsoil is absent or thin over much of the GWB, especia	ally the higher ground in the northern	and central areas.						
erl tra		Thicker deposits (>3 m) are more common in the flatter areas and river valleys, with the thickest deposits of 10 m countries in the court of the CWP and in the court of the flatter areas and river valleys.								
o s	0/ 2002*6	>10 m occurring in the south of the GWB and in the cent	re of valleys.							
	70 area aquifer	[Information will be added at a later date]								
I	near surface	l								

Vulnerabili			y	From the Donegal GWPS, the majority of this GWB is classified as Extremely vulnerability, due to the high						
				percentage of thin subsoil. Where subsoils are thicker, such as in the valleys and in the southern area, the						
pockets of peat.										
	Mai	in rechai	rge	Diffuse recharge occurs via rainfall percolating through the subsoil and rock outcrops. Due to the low						
-ge	mec	hanisms	(permeability of some thicker peat subsoil deposits and the aquifers, a high proportion of the effective rainfall						
har	I			will quickly discharge to the streams in the GWB. In addition, the steep slopes in the mountainous areas promote						
Rec	Est.	recharg	ie.	Surface funtion, The feldively figh succan density is fixely to be influenced by the low permeability focks.						
	rate	es	C							
	Spr	ings and		Sources: Fahan PWS (spring $-45 \text{ m}^3/\text{d}$).						
	larg	ge known	i I	Springs: see above.						
	abst	tractions	i -	Excellent wells: Lismoghry $(2200 \text{ m}^3/\text{d})$.						
	Mai	in discha	rae	Good wells: Ballynakilly (110 m ^{-/} d).						
	mechanisms		rge	Small springs and seens are likely to issue at the stream heads and along their course. Seenages will develop on						
arge				the coastal cliff faces.						
sch£	Hyd	Irochem	ical	National classification: Precambrian Quartzites, Gneisses and Schists						
Di	Sigi	lature		Non-calcareous with bi-modal alkalinity distribution although the higher range is possibly caused by thin marble						
				bands and overlying limestone subsoil.						
				Alkalinity (mg/l as CaCO ₃): range of 14-400; mean of 168 (41 'non limestone subsoils' data points) Total Hardness (mg/l): range of 46-412: mean of 200 (39 'non limestone subsoils' data points)						
				Conductivity (μ S/cm): range of 160-752; mean of 446 (45 'non limestone subsoils' data points)						
				(Calcareous/Non calcareous classification of bedrock in the Republic of Ireland report)						
Gro	undw	ater Flo	w	In the absence of inter-granular permeability, groundwater flow is expected to be concentrated in upper fractured						
	Pa	ths		and weathered zones and in the vicinity of fault zones. Of the few available groundwater levels (5), 5 are <5 m						
				below ground level. In the Marbles, the permeability of the fracture/fault zones may be enhanced by some degree of karstification. Unconfined groundwater flow paths are short (30-300 m), with groundwater generally						
				following the topography and then discharging rapidly to seeps, small springs and streams. Water strikes deeper						
				than the estimated interconnected fissure zone suggest a component of deep groundwater flow, however shallow						
				groundwater flow is dominant. Overall, groundwater flow is westwards, towards Lough Swilly.						
Gr	Groundwater &			Groundwater will discharge locally to streams and rivers crossing the aquifer and also to small springs and						
j	interactions			seeps. Owing to the poor productivity of the aquiters in this body it is univery that any major groundwater -						
Southern and eastern GWB boundaries are topographic divides (Hydrometric Areas 01 and 40). The way										
	-	compris	e coa	stline (Lough Swilly) and the south-western boundary represents a change in aquifer type. The terrain is						
_	I	characteristically hilly to mountainous, incised by large valleys and with low-lying, flatter areas along to the south.								
ode	•	The GV	GWB is composed primarily of low transmissivity rocks, although the Marbles (Ll aquifer) are likely to have							
l m	I	higher ti	ansm	ansmissivities than the Quartzites, Gneisses and Schists (Pl/Pu).						
tua	•	Most of	If the groundwater flux is likely to be in the uppermost part of the aquifer comprising: a broken and weather the set than 3m thick: a zone of interconnected fissuring less than a 10m; and a zone of isolated fissuring training the set of the							
deo	I	than 150	. Om. Karstification may have enlarged the fractures/faults in the Marbles.							
Con	•	Recharg	rege occurs diffusely through the subsoil and rock outcrops, although is limited by any peat and the low pe							
Ŭ	I	bedrock	Therefore, most of the effective rainfall is not expected to recharge the aquifers.							
	•	Flow pa	paths are likely to be short (30-300 m) with groundwater discharging rapidly to the streams crossing the aquife							
A 44 1	small spring			and seeps. Overall, the flow direction is westwards towards Lough Swilly, as determined by the topography.						
Attaci	men	ts totion	Figur	re 1. Table 1. am gauge: 30002, 30003, 30004, 30010, 30013, 30015, 30016, 30021						
Instrumentation		auon	EPA	A Water Level Monitoring boreholes: None identified.						
			EPA	PA Representative Monitoring boreholes: None identified.						

Information Sources	Lee M. and Fitzsimons V. (2004). <i>County Donegal Groundwater Protection Scheme</i> . Main Report. Draft Report to Donegal County Council. Geological Survey of Ireland 58pp. Lee M. and Daly D. (2004). <i>Magherabeg/Veggh Public Water Supply Scheme</i> . Source Protection Zones. Geological					
	Survey of Ireland Report.					
	Lee M. and Daly D. (2004). Culdaff Water Supply Scheme, Source Protection Zones. Geological Survey of Ireland Report.					
	Long, C.B. & McConnell B.J. (1997) Geology of North Donegal: A geological description to accompany bedrock geology 1:100,000 scale map, Sheet 1 and part of Sheet 2, North Donegal. With contributions from P. O'Connor, K. Claringbold, C. Cronin and R. Meehan. Geological Survey of Ireland. 87pp					
	Minerex Environmental Ltd (2000). Letterkenny Water Supply – No. 2 Augmentation Scheme. Groundwater resource development in Glen Swilly. Data Review, Geophysics, Core Logging, Replacement Well Drilling, Pumping Tests & Reporting. Fieldwork July – November 2000. MEL Report Ref:- 1009-828 (Final).doc.					
	O' Riain, G. 2004. <i>Water Dependent Ecosystems and Subtypes (Draft)</i> . Compass Informatics in association with National Parks and Wildlife (DEHLG). WFD support projects.					
	Parkes, M., Johnston, D., Simms, M.J. and John G. Kelly (1999). <i>Geological guidance of speleogenesis in marble of the Dalradian Supergroup, County Donegal, Ireland.</i> Cave and Karst Science Vol. 26. No3. December 1999. Transactions of the British Cave Research Association.					
Disclaimer	Note that all calculation and interpretations presented in this report represent estimations based on the information sources described above and established hydrogeological formulae					

Figure 1. Location and Boundaries of GWB.

Table 1.	. List of	rock u	nits in	Lough	Swilly	East	GWB
----------	-----------	--------	---------	-------	--------	------	-----

Rock Unit Name	Code	Description	Rock Unit Group	Aquifer Class.	% Area
Lough Foyle Succession	LFS	Schist and grit with thin marble units	Precambrian Quartzites, Gneisses & Schists	P1	35.87%
Fahan Slate Formation	FS	Dark pelitic & psammitic schist	Precambrian Quartzites, Gneisses & Schists	Pu	14.18%
Fahan Grit Formation	FG	Pale grey grit with psammitic schist	Precambrian Quartzites, Gneisses & Schists	Pl	12.43%
Lower Crana Quartzite Formation	LC	Psammitic schist, some marble beds	Precambrian Quartzites, Gneisses & Schists	Pl	9.92%
Termon Formation	TE	Banded semi-pelitic & psammitic schist	Precambrian Quartzites, Gneisses & Schists	P1	8.79%
Upper Crana Quartzite Formation	UC	Psammitic schist with pebbly grit beds	Precambrian Quartzites, Gneisses & Schists	Pl	6.90%
Slieve Tooey Quartzite Formation	ST	Whitish quartzite with pebble beds	Precambrian Quartzites, Gneisses & Schists	Pl	6.64%
Culdaff Limestone Formation	CU	Grey graphitic marble & pelitic schist	Precambrian Marbles	Ll	3.68%
Metadolerite	Md	Hornblendic and sometimes schistose	Precambrian Quartzites, Gneisses & Schists	Pl	1.15%
Tullagh Point Granite	Tu	Coarse granodiorite to monzogranite	Granites & other Igneous Intrusive rocks	Pl	0.43%