

Cavan County Council

Establishment of Groundwater Source Protection Zones

Kingscourt Water Supply Scheme Descart Boreholes

April 2011

Prepared by: Peter Conroy On behalf of the Geological Survey of Ireland

With contributions from: Ms. Jenny Deakin & Dr. Robert Meehan

> And with assistance from: Cavan County Council

Project description

Since the 1980's, the Geological Survey of Ireland (GSI) has undertaken a considerable amount of work developing Groundwater Protection Schemes throughout the country. Groundwater Source Protection Zones are the surface and subsurface areas surrounding a groundwater source, *i.e.* a well, wellfield or spring, in which water and contaminants may enter groundwater and move towards the source. Knowledge of where the water is coming from is critical when trying to interpret water quality data at the groundwater source. The Source Protection Zone also provides an area in which to focus further investigation and is an area where protective measures can be introduced to maintain or improve the quality of groundwater.

Cavan County Council contracted GSI to delineate source protection zones for groundwater public water supply sources in Co. Cavan. In the current phase of investigations the sources for which delineations have been requested are Kingscourt and Ballyconnell.

This report documents the delineation of the source protection zones for the Kingscourt Descart test wells. The source protection zones for the Kingscourt Mullantra supply are provided in a separate report.

A suite of maps and digital GIS layers accompany this report and the reports and maps are hosted on the GSI website (www.gsi.ie).

TABLE OF CONTENTS

1		Introduction	1
2		Methodology	1
3		Location, site description and well head protection	1
4		Summary of well details	2
5		Topography, surface hydrology, landuse	4
6		Hydrometeorology	5
7		Geology	5
	7.1 7.2 7.3 7.4		6 8
8		Groundwater vulnerability1	1
9		Hydrogeology1	3
	9.1 9.2 9.3 9.4	Groundwater body and status	3 5
1	0	Zone of Contribution	20
	10.2	1 Conceptual model 2 2 Boundaries of the ZOC 2 3 Recharge and water balance 2	21
1	1	Source Protection Zones	25
1	2	Potential pollution sources2	28
1	3	Conclusions2	28
14	4	Recommendations2	28
1	5	References	29

TABLES

Table 4-1	Well Details	4
Table 7-1	Bedrock Descriptions	6
Table 9-1	Dolomite Saturation Index (SI) Values	
Table 9-2	Indicative Aquifer Hydraulic Parameters	
	Recharge co-efficients for the study area	
	Bedrock Recharge Calculation Summary	
	Source Protection Zones	

FIGURES

Figure 1 Kingscourt Descart PWS Site Location	3
Figure 2 Bedrock Geology of the Study Area	7
Figure 3 Subsoil Geology of Study Area	
Figure 4 Soils Map of Study Area area	10
Figure 5 Groundwater Vulnerability Map of Study Area	12
Figure 6 Aquifer map of Study Area	14
Figure 7 Key Indicators of Agri and Domestic Contamination (BW02): Bacteria and Ammonium.	16
Figure 8 Key Indicators of Agri and Domestic Contamination (BW02): Nitrate and Chloride	16
Figure 9 Key Indicators of Agri and Domestic Contamination (BW02): Mn, Fe, K and K:Na ratio	16
Figure 10 Key Indicators of Agri and Domestic Contamination (BW03): Bacteria and Ammonium	17
Figure 11 Key Indicators of Agri and Domestic Contamination (BW03): Nitrate and Chloride	17
Figure 12 Key Indicators of Agri and Domestic Contamination (BW03): Mn, Fe, K and K:Na ratio	17
Figure 13 Conceptual Model	22
Figure 14 Zone of contribution and Source Protection Areas	23
Figure 15 Source Protection Zones	

APPENDICES

Appendix 1 Point Data, Water Quality Data & Borehole Data

1 Introduction

Groundwater Source Protection Zones (SPZ) have been delineated for the Kingscourt Public Water Supply Scheme according to the principles and methodologies set out in 'Groundwater Protection Schemes' (DELG/EPA/GSI, 1999) and in the GSI/EPA/IGI Training course on Groundwater SPZ Delineation.

The Descart <u>test wells</u> (labelled bore wells BW02 and BW03 by Cavan County Council) are located in the townland of Descart, Carrickmacross, Co. Monaghan which lies approximately 3.8 km east-northeast of Kingscourt town centre. <u>Production wells have not yet been drilled and the sources have not yet been commissioned.</u>

Kingscourt is currently supplied by the Mullantra borehole source (BW01) (500 m³/day) and by Ervey Lough (500 m³/day). Cavan County Council plan to phase out the abstraction from Ervey Lough by 2013 and replace it with two additional production boreholes, at the sites of test wells BW02 and BW03 (also formerly known as TW13 and TW10 respectively). The overall proposed scheme yield is 1,408 m³/day for BW01, BW02 and BW03 (WYG, 2003). Source protection zones have also been delineated for the Mullantra source and are described in a separate report.

The objectives of the study were:

- To outline the principal hydrogeological characteristics of the Descart area where the test wells are located.
- To delineate source protection zones for the test wells.
- To assist Cavan County Council in protecting the water supply from contamination.

The protection zones are intended to provide a guide in the planning and regulation of development and human activities to ensure groundwater quality is protected. More details on protection zones are presented in 'Groundwater Protection Schemes' (DELG/EPA/GSI, 1999).

2 Methodology

The methodology applied to delineate the SPZ consisted of data collection, desk studies, site visits and field mapping, and subsequent data analysis and interpretation.

A desk study of existing data sources was carried out prior to a site visit. Site visits and walk-over, and field mapping of the study area were conducted on 08/07/2010 and, 9, 10, 27 and 28/09/2010. An interview was carried out on 08/07/2010 with the scheme caretaker.

While specific fieldwork was carried out in the development of this report, the maps produced are based largely on the readily available information and mapping techniques using inferences and judgements from experience at other sites. As such, the maps may not be definitively accurate across the whole area covered, and should not be used as the sole basis for site-specific decisions, which will usually require the collection of additional site-specific data.

3 Location, site description and well head protection

The two wells are located in separate fields approximately 250 m apart in the townland of Descart in County Monaghan, 3.8 km east-northeast of Kingscourt (Figure 1).

Borehole BW02 is located in the corner of a field, is overgrown with scrub and lies 350 m north of Tobermennan Bridge (see Photo 1). The well head comprises a 300 mm diameter steel casing rising approximately 0.1 magl with a concentric 200 mm steel casing rising to 0.45 magl within. There is an unsecured well cap on the inner casing. The borehole log records the presence of a cement seal in the annulus between the two casings from 0 to 9.14 mbgl.

Borehole BW03 is located in a grassy field 360 m northwest of Tobermennan Bridge (see Photo 2). The borehole is capped at ground level with a water tight seal. The borehole is artesian (overflowing) and the seal (or possibly the casing) leaks slightly. There is a rising main passing up through the cap which currently supplies the nearby residential farm under the natural artesian pressure. The borehole has a 150 mm steel casing from 0 m to 29 mbgl. There is no record of a grout seal installation on the borehole log.

Photo1: Borehole BW02

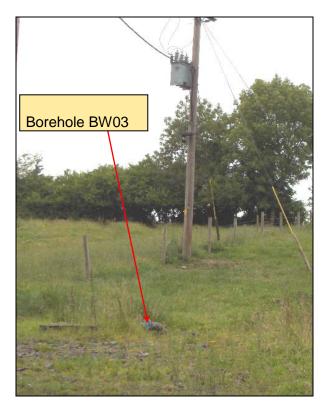


Photo2: Borehole BW03

4 Summary of well details

The well details are derived from various hydrogeological investigation reports and accompanying borehole logs prepared between 1996 and 2003 by KT Cullen & Co Ltd. and WYG. The borehole logs for boreholes BW02 and BW03 together with tables summarising key data extracted from the reports (Tables A1.1 to A1.5) are provided in Appendix 1.

Boreholes BW02 (TW13) and BW03 (TW10) were drilled by Dunnes Water Services Ltd. with KT Cullen & Co Ltd. as hydrogeological consultants in January 1998 and February 1996 respectively.

Borehole BW02 was drilled as one of a pair of boreholes. An initial trial well (TW12) was drilled at the site to a depth of 135 mbgl. It encountered a large volume of water between 8 m and 20 mbgl, which was subsequently cased off during the drilling process. Borehole BW02 was then drilled to target this shallow groundwater.

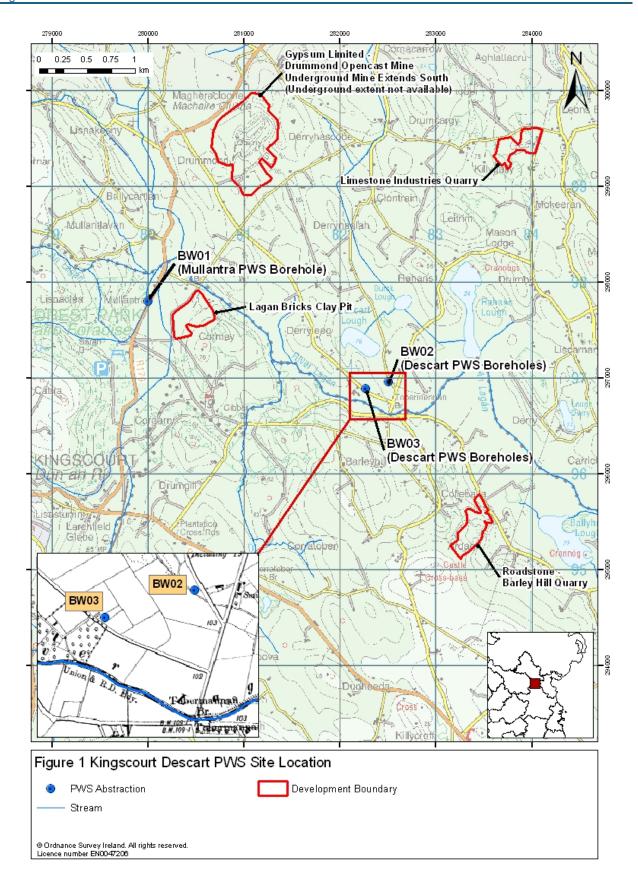


Figure 1 Kingscourt Descart PWS Site Location

Borehole BW03 was drilled to a depth of 91 m where a cavern was intersected and resulted in an artesian overflow of 1,300 m³/day. The well was plugged with an inflatable packer three months after drilling. It is understood that this packer is currently stuck in the well and cannot be (easily) removed. The artesian supply from BW03 to the nearby farm suggests the packer is compromised.

	BW02	BW03	
Grid ref. (GPS)	X: 282514 Y:296953	X: 282281 Y:296881	
Other Names	TW13; Borewell no. 2	TW10; Borewell no. 3	
Townland	Descart, Co. Monaghan	Descart, Co. Monaghan	
Source type	Trial Borehole	Trial Borehole	
Drilled	January 1998	February 1996	
Owner	Cavan Cou	nty Council	
Elevation (Ground Level)	~31 m OD	~ 34.5 m OD	
Depth (m)	19.2	91	
Depth of casing	200mm: 19.2 m (slots 10.2 to 19.2) 300mm: 9.14 m	29 m	
Grout Seal	0 to 9.14 in casings annulus	none	
Diameter	200 mm	150 mm	
Depth to rock	8.8 m	17.5 m	
Static water level	0.02 mbgl (Feb 1998)	Artesian	
Pumping water level	11.39 mbgl for 1557 m ³ /day (Feb 1998, unsteady) 11 to 12 mbgl for ~ 900 m ³ /day (Feb – April 2003)	5.49 mbgl for 2072 m ³ /day (Mar 1996) 3.5 mbgl for 1260 m ³ /day (Feb – Apr 2003)	
Consumption (Co. Co. records)	Not yet commissioned.	Not yet commissioned.	
Pumping test summary: (i) abstraction rate m ³ /d	1557 m ³ /day (70hr, Feb 1998)) ~ 900 m ³ /day (6 wk, Feb – April 2003)	2072 m ³ /day (30 hr, Mar 1996) 1260 m ³ /day (6 wk, Feb – April 2003)	
(ii) specific capacity	137 m ³ /d/m (Feb 98) 75 m ³ /d/m (Apr 03)	377 m ³ /d/m (unsteady) (Mar 96) 360 m ³ /d/m (Apr 03)	
(iii) transmissivity	47	114	

Table 4-1: Well Details for Descart Boreholes

Details of pumping tests carried out on the boreholes are recorded in Table A1.1 in Appendix 1.

5 Topography, surface hydrology, landuse

The test wells are at an elevation of approximately 31 to 34 mAOD. The topography of the study area is dominated by northwest to southeast oriented drumlins to the north, west and east of the boreholes. The overall slope of the boreholes' locality is to the southeast towards the Lagan River, which flows roughly southeast between 100 m to 250 m southwest of the boreholes. To the south and south east on the opposite side of the River Lagan, the bedrock cored Barley Hill ridge rises to above 120 m AOD.

Drainage density is high to the west of the boreholes with numerous streams draining through the drumlins and flowing towards the Lagan River. Immediately north of the boreholes, surface water courses are intercepted by Descart, Bursk and Rahans Loughs, which flow into the Lagan *via*

Rahans Lough (see Figure 1). To the east and south of the boreholes drainage density is generally low with large areas mapped with no surface water features.

The landuse in the catchment is predominantly agricultural with most fields given over to pasture. There is a large opencast and underground gypsum mine operated by Gypsum Ltd. located 2.3 km northeast of the boreholes in the townland of Drummond. Roadstone operate a large limestone quarry 1.5 km to the southeast at Barley Hill. There are numerous domestic residences and residential farms along the roadsides in the vicinity of the boreholes.

6 Hydrometeorology

Establishing groundwater source protection zones requires an understanding of general hydrometeorological trends across the area of interest. This information was obtained from Met Eireann.

Annual rainfall: 1013 mm. The closest meteorological station to boreholes BW02 and BW03 is Kingscourt Garda Station¹, located 3.7 km west-southwest in Kingscourt town centre. The annual average rainfall from 1961 to 1990 was 1013 mm (Fitzgerald and Forrestal, 1996).

Annual evapotranspiration losses: 416 mm. The closest synoptic weather station to the study area is Clones, located 41 km to the northwest. Average potential evapotranspiration (P.E.) at Clones between 1961 and 1990 was 438 mm (Fitzgerald and Forrestal, 1996). The contoured mean annual potential evapotranspiration for Ireland shows that Kingscourt lies close to the 450 mm/yr contour and that therefore, Clones is likely to adequately represent the study area P.E. Actual evapotranspiration (A.E.) is then estimated as 95% of P.E., to allow for seasonal soil moisture deficits giving an Actual Evapotranspiration of 416 mm.

Annual Effective Rainfall: 597 mm. The annual effective rainfall (i.e. potential recharge) is calculated by subtracting actual evapotranspiration from rainfall.

7 Geology

7.1 Introduction

This section briefly describes the relevant characteristics of the geological materials that underlie the site. It provides a framework for the assessment of groundwater flow and delineation of the source protection zones.

The desk study data used comprised the following:

- Reports on groundwater resources investigations for the Kingscourt Regional Water Supply Scheme between 1996 and 2003 (KT Cullen/White Young Green)
- Boreholes' logs of trial wells and production wells from Dunnes Water Services Ltd and KT Cullen/ WYG, 1995 to 2002
- Geology of Meath. Bedrock Geology 1:100,000 Scale Map, Sheet 13. Geological Survey of Ireland (Geraghty, M. and McConnell, B., 1999)

¹ Note: This rainfall station closed in 1991 and was replaced by Kingscourt Drummond, 3.9 km to the northeast on the Gypsum Limited opencast mine site.

- Gypsum Limited borehole data and Hydrogeological Reports between 2003 and 2010
- EPA Subsoils Map (Teagasc, 2006)

7.2 Bedrock geology

Sheet 13, the Geology of Meath published by the GSI indicates that the area is underlain by the bedrock types described in Table 7-1. Table 7-1 shows the strata in stratigraphic order from youngest to oldest. The distribution of the various bedrock units is shown in Figure 2.

Bedrock Formation	Generalised Rock Unit Classification	Geological Description	Max thickness (m) ²
Kingscourt Sandstone (KS)	Permo-Triassic Sandstones (PTS)	Red Sandstone	400
Kingscourt Gypsum Formation (KG) Permo-Triassic Mudstones & Gypsum (PTMG)		Mudstone with Gypsum and Anhydrite units	120
Cabra, Corratober, Clontarin & Carrickleck Formations (NamSstSH)	Namurian Undifferentiated (NU)	Interbedded Sandstones and Shales. Carrickleck shales commonly ferruginous. Ironstone bands in Ardagh (occasional) and Corratober formations.	Carrickleck ~ 170 m, Clontrain ~ 60 m, Corratober ~ 100 m, Cabra ~ 90 m
Carrickleck Sandstone Member	Namurian Sandstone (NSA)	Buff coloured sandstone	~ 60 (within Carrickleck Fmn)
Ardagh Shale Formation	Namurian Shales (NSH)	Black shale, contains minor limestone beds.	150
Milverton Group (Undifferentiated) (MLV)	Dinantian Pure Bedded Limestones (DPBL)	Micrite, crinoidal grainstone/ packstone with localised chert. Some thinly bedded argillaceous limestone. Extensively dolomitised in parts.	> 850
Fingal Group (FNG)	Dinantian Upper Impure Limestones (DUIL)	Dark limestone shale and micrite	> 378

Table 7-1: Bedrock Descriptions around the Descart locality

The bedrock geology of the area comprises Kingscourt Sandstone strata overlying, in turn, Kingscourt Gypsum, Namurian Sandstone and Shales, and Dinantian Limestone (see Figure 2 and Table 7-1). The strata dip westwards at approximately 10 degrees in a half-graben structure towards the north to south trending Kingscourt Fault (Gardiner and McArdle, 1992). Further north to south trending faults occur to the west of the boreholes between the boreholes and the Kingscourt fault.

Two kilometres to the southeast in the vicinity of Ardagh on Barley Hill, the Milverton Group limestone abuts a northeast trending fault with Ardagh Shale, and Fingal Group shale and muddy limestone to the south. This fault forms a major structural boundary between the Milverton Group limestones of the Ardagh Platform to the north and the shales, calcarenites and limestones of the Moynalty Basin to the south.

² Maximum thickness values taken from Geraghty and McConnell, 1999.

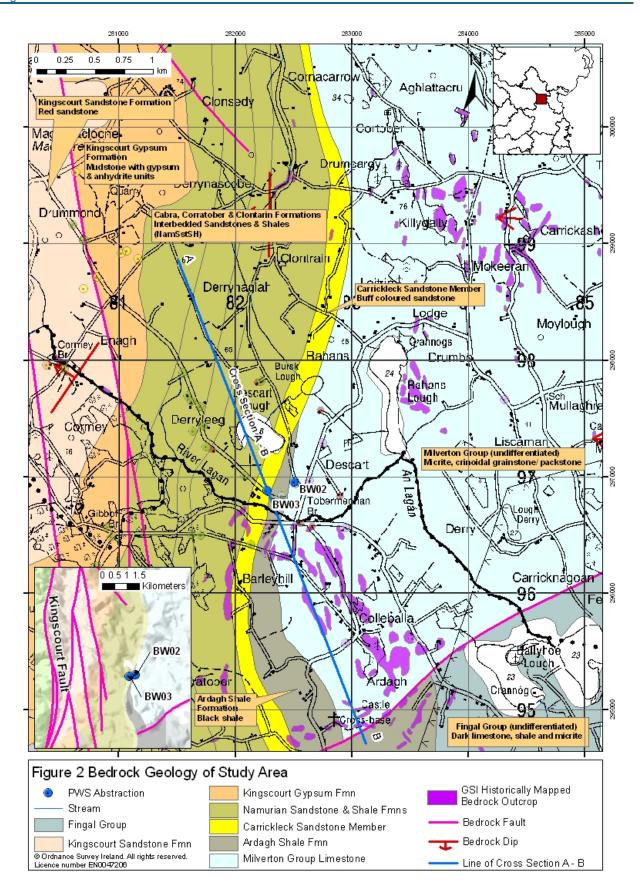


Figure 2 Bedrock Geology of the Study Area

The stratigraphic sequence in the vicinity of the test wells is recorded in the borehole logs for boreholes BW02 and TW12 (which are adjacent to each other), and BW03. At the site of BW02 and TW12 the logs record: shallow red sandstone; over thick white limestone with some interbedded shale; over white-brown sandstone at depth. At BW03 the log records bedrock of white limestone; over thick grey-black shale; over thick white-brown sandstone which contained a 7 m deep cavity at 82 to 89 mbgl. It is considered here that the strata logged in these boreholes as "red sandstone"; and, "white-brown sandstone" were misinterpreted and are likely to have been dolomitised limestone bedrock. This is supported by:

- Hydrochemistry data, which show that the large inflows from these strata are saturated with respect to the mineral dolomite (see Section 9.3).
- A large karst cavern such as at BW03 is more likely to occur in dolomitised limestone than in sandstone. (Multiple cavities from 2 to 7 m in depth were encountered in borehole OW05).
- Interpretation as dolomitised limestone agrees with the bedrock map of the area which shows Milverton Group Limestone outcrop at BW02 and TW12. This limestone is known to be extensively dolomitised. At BW03, the map shows shale overlying Milverton Group limestone and a thick sandstone layer would not be expected with this configuration;
- Similar reinterpretations of the borehole logs also appear valid for boreholes OW05 and TW11 located on Barley Hill directly south of the trial boreholes.

Approximately 100 karst features are known to the north and northeast of the test wells, in the Co. Monaghan part of the Milverton Group outcrop. A swallow hole has been mapped on top of Barley Hill at KF01 (data from R. Meehan) (see Figure 6). A second swallow hole occurs to the south of KF01 according to the Monaghan GWPS main report (GSI, 2002). The caverns encountered in BW03 and OW05 may be part of a deep paleokarst conduit system in the limestone/dolomitised limestone. The upper surface of the Milverton Group limestone was eroded to varying depths before deposition of the overlying Namurian strata (Geraghty *et al*, 1999). As such, karstification may also occur at the boundary surface between the Milverton Group and the overlying Namurian strata. The extensive dolomitisation enhances the permeability of limestone by creating additional void space and can further increase the likelihood of karstification (GSI, 2004a). Due to the regional north-south trend in both the faults of the area, and the bedding strike, it is likely that karstification and dolomitisation will have developed preferentially with the same north-south orientation.

7.3 Soil and subsoil geology

The subsoil and soil distributions across the area are illustrated in Figures 3 and 4 respectively.

Till subsoils cover the majority of the study area. Till derived from Lower Palaeozoic sandstones and shales is mapped across the majority of the area west, north and east of test wells. To the north and east of Descart on the limestone bedrock, this till is thought to form a thin skim over a thicker deposit of limestone-dominated till. Till derived from limestone is mapped at the surface on the flanks of Barley Hill itself and in pockets to the east of this. South and southwest of Barley Hill, the tills are mapped as being derived from Namurian shales and sandstones.

Cut away peat is found around Descart, Bursk and Rahans Loughs, extending southeast from Rahans Lough along the east of Barley Hill and the River Lagan, and in small pockets elsewhere.

The River Lagan is generally flanked by alluvial soils. Bedrock outcrop is mapped on Barley Hill, and in the Killygally – Mokeeran area, both of which host major limestone quarries (see Figure 1). Rock outcrop is also mapped on the eastern side of Rahans Lough.

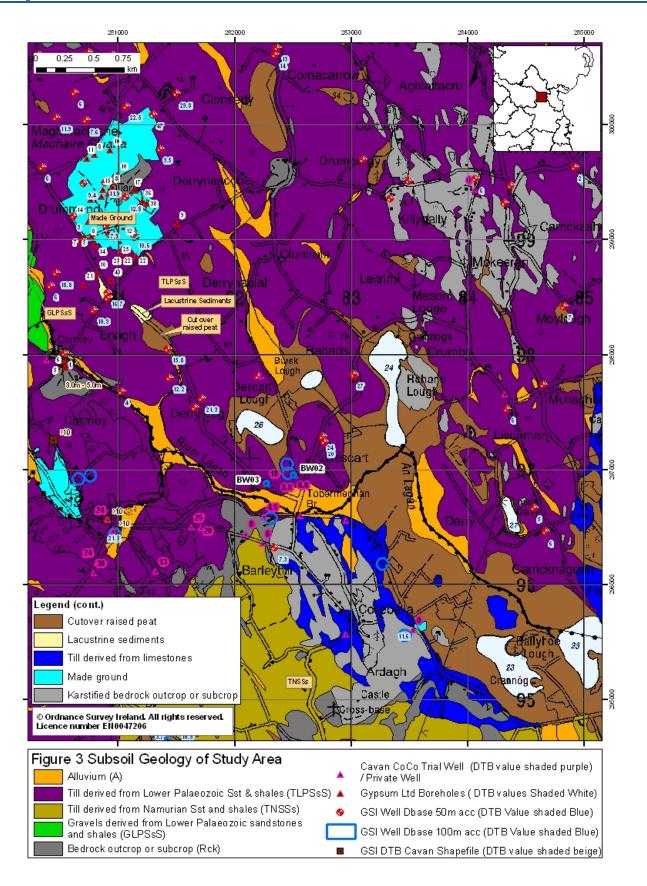


Figure 3 Subsoil Geology of Study Area

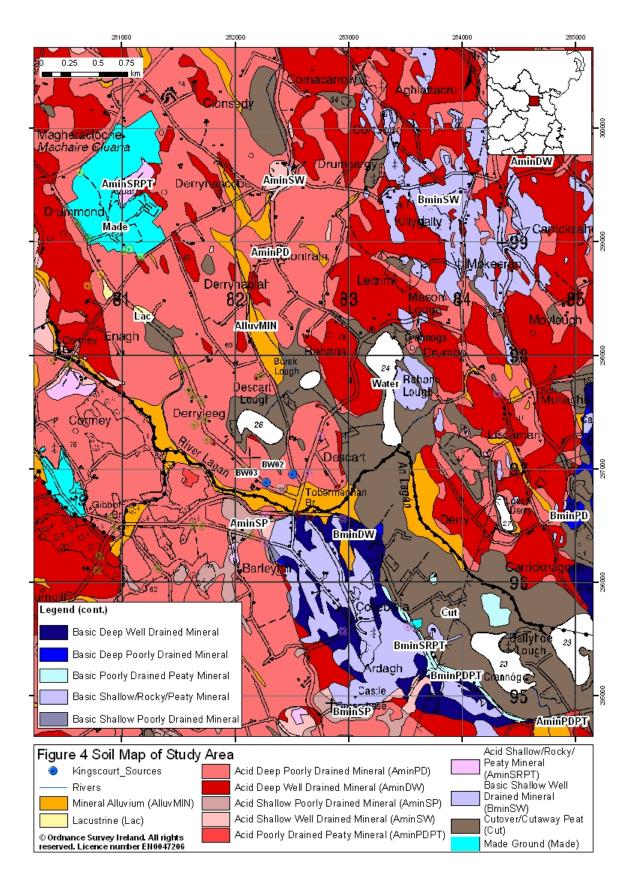


Figure 4 Soils Map of Study Area

The EPA and GSI Web Mapping classify the soils at and to the west of the test wells as predominantly acidic, mineral, poorly drained soils. Alluvium and cut peat distributions are as per the soil map. Soils on drumlins to east and north of the test wells are generally classified as acid, mineral, deep, well drained soils, but with poorly drained mineral soils in the inter drumlin hollows. Soils are classified as basic, mineral, shallow, well drained, and basic, mineral, deep, well drained in areas of limestone bedrock outcrop at Barley Hill and on high ground to the northeast.

It is envisaged that, due to the predominance of shale in the Lower Palaeozoic and Namurianderived tills, these materials are of low permeability. This is corroborated by borehole logs for the test wells and from other trial wells to the west, which show subsoil dominated by clay. The GSI classify the areas where the shale till is just a thin skim over limestone till, and the alluvial subsoil areas as moderate permeability. The areas of cut peat are classified as low permeability.

The subsoil permeability observations correlate with the mapped soil types and are supported by field observations of well drained lands to the north, east and south of the test wells and predominantly poorly drained lands to the west and southwest. The subsoils logged at various trial boreholes across the study area are summarised in Table A1.1 in Appendix 1.

7.4 Depth to bedrock

The depth to bedrock (DTB) data for the area are shown on Figure 4. These show that in the drumlin areas to the west and northwest of boreholes BW02 and BW03, DTB is generally greater than 10 m. In the inter-drumlin low area at borehole BW03, this drops to 8.8 m. Further east there are fewer data, however the available data suggest that the DTB in the inter-drumlin areas and away from mapped bedrock outcrop is between 5 and 10 m, with DTB possibly increasing to greater than 10 m at the drumlin summits. A GSI well database borehole on the eastern slope of Barley Hill, adjacent to the northern boundary of the quarry, suggests that DTB between the eastern flank of the hill and the River Lagan may exceed 10 m in places, however the GSI interpret the DTB of this area as generally being between 3 m and 10 m.

Areas of bedrock outcrop and encompassing areas of rock close to surface (*i.e.* DTB <3 m) are shown on the GSI groundwater vulnerability map of the area. The area mapped as rock close to the east of the test wells, and along the northern bank of the River Lagan, is considered here to have DTB of 3 to 10 m based on the available DTB data and landscape assessment. The DTB and vulnerability have been changed accordingly and the relevant area is highlighted in Figure 5.

8 **Groundwater vulnerability**

Groundwater vulnerability is dictated by the nature and thickness of the material overlying the uppermost groundwater 'target'. This means that the vulnerability relates to the permeability and thickness of the subsoil. A detailed description of the vulnerability categories can be found in the Groundwater Protection Schemes document (DELG/EPA/GSI, 1999) and in the draft GSI Guidelines for Assessment and Mapping of Groundwater Vulnerability to Contamination (Fitzsimons *et al*, 2003).

The vulnerability map is shown in Figure 5. In terms of subsoil coverage within the catchment of the wells, the area can be divided into the following zones:

 To the west of the test wells, the low subsoil permeability and DTB >10 m combine to give predominantly low vulnerability, except in some inter-drumlin low areas where DTB decreases and vulnerability is therefore moderate, or where bedrock outcrop occurs and vulnerability becomes extreme.

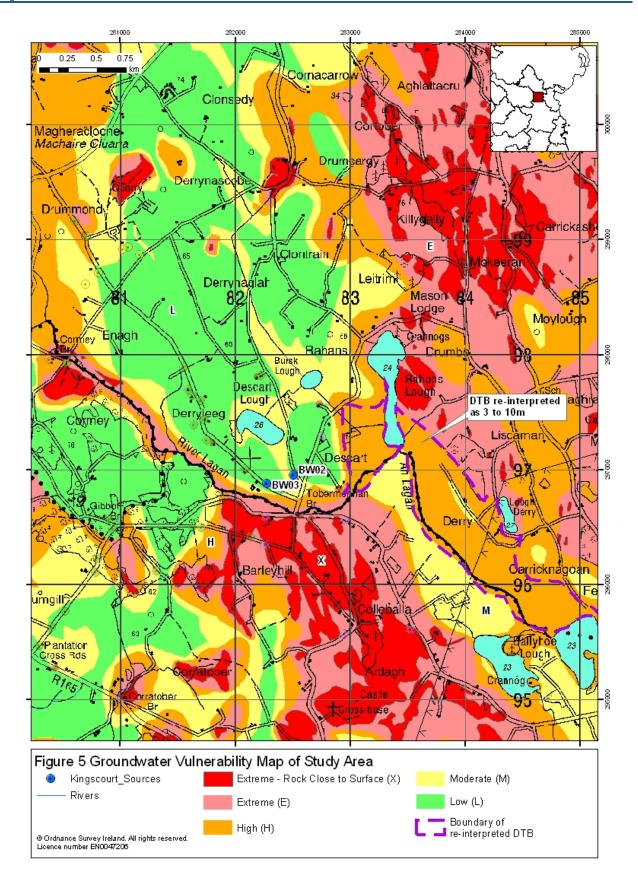


Figure 5 Groundwater Vulnerability Map of Study Area

- To the east of the test wells, the moderate permeability and the DTB combine to give generally high vulnerability, reducing to moderate at the drumlin peaks due to increased DTB³. The vulnerability decreases to moderate in the cutover peat area on the south flank of the Lagan River due to the peat low permeability.
- To the south and northeast of the test wells, where large areas of bedrock outcrop occur, the vulnerability is classified as extreme.

9 Hydrogeology

This section describes the current understanding of the hydrogeology in the vicinity of the wells. Hydrogeological and hydrochemical information was obtained from the following sources:

- GSI Website, Database and Groundwater Body Initial Characterisation Summaries
- County Council Staff
- EPA website and Groundwater Monitoring database
- Reports on groundwater resources investigations for the Kingscourt Regional Water Supply Scheme between 1995 and 2005 (KT Cullen, White Young Green)
- Gypsum Limited borehole data and Hydrogeological Reports between 2003 and 2010

9.1 Groundwater body and status

The boreholes are located at the boundary of the Kingscourt (IE_NB_G_017) and Carrickmacross (IE_NB_G_016) Groundwater Bodies which have been classified as being of Good Status. The groundwater body descriptions are available from the GSI website: <u>www.gsi.ie</u> and the 'status' is obtained from the Water Framework Directive website: <u>www.wfdireland.ie/maps.html</u>.

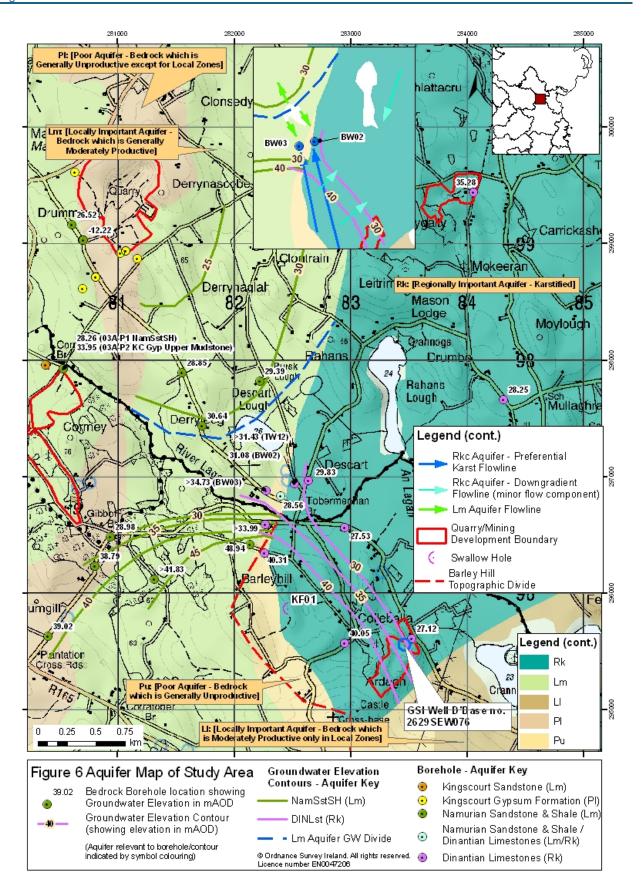
9.2 Groundwater levels, flow directions and gradients

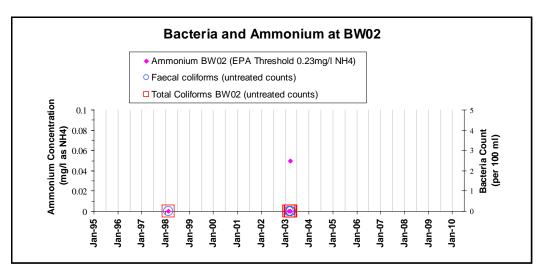
Groundwater levels have been recorded sporadically at trial wells across the study area between 1995 and 2010. Groundwater monitoring has been conducted routinely within the stratified aquifers underlying the Gypsum Ltd site to the northwest of the test wells. The water level data from the data sources have been collated and are presented in Tables A1.2 to A1.4 in Appendix 1. Table A1.4 and Figure A1.1 in Appendix 1 show the aquifer intersected by each monitoring point. A groundwater level monitoring round was carried out on 27 and 28 September 2010 as part of this report in a wide network of monitoring points across the study area. The groundwater elevation in metres above Ordnance Datum (mAOD) has been estimated for each groundwater depth and the resulting groundwater elevations at each monitoring point are shown in Figure 6. Interpreted contours of groundwater elevation derived from the point data are also shown.

The available data suggest that:

- There is a groundwater high at Barley Hill. Recharge to the limestone bedrock outcrop creates a mound which radiates groundwater flow out into the bedrock to the north and northeast, towards the River Lagan. There may also be a small component of flow circulating to the west into the confined limestone strata.
- Lateral hydraulic gradients in the limestone bedrock vary from 0.036 on Barley Hill to approximately 0.005 between Mokeeran and the River Lagan (average of 0.021).

³ Note: In the area on the north side of the river Lagan where DTB has been re-interpreted as 3 to 10 m the resulting vulnerability has been revised from extreme (E) to high (H) on Figure 5. The affected area is highlighted on Figure 5.




Figure 6 Aquifer map of Study Area

- The easterly gradient off Barley Hill is high for a karstified aquifer and suggests that karst connectivity and transmissivity in this direction is low; needing a high gradient to transmit relatively low volumes of water in the low transmissivity direction (see Section 9.4). There is a contrast between the high borehole yields to the north of Barley Hill (TW11, TW12, BW02 and BW03) and low yields to the east (GSI Well Database record 2629SEW076) (Section 9.4), which supports the idea of increased transmissivity and flow northwards. As such, groundwater flow is considered to be predominantly northwards in the likely direction of preferential karst conduit flow
- Natural discharge from the karst system may be to the River Lagan. Boreholes intersecting the karst north of the river appear to draw water beneath the river from the south, facilitated by karst conduits and a large head between Barley Hill and the boreholes.
- It is assumed that the fault boundary between the karstified limestone and shale bedrock at the southeast of Barley Hill (i.e. major structural boundary between limestone platform and subsiding basin) is a no-flow boundary. This agrees with the contrasting aquifer types across the boundary (see Section 9.4). Flow paths in the shale aquifers are assumed to follow topographic gradients and discharge to local surface water features. There may be some minor leakage northwards across the boundary, close to the boundary.
- In the Namurian bedrock, the lateral hydraulic gradient varies from 0.073 northwards from Barley Hill, to approximately 0.005 in the vicinity of the gypsum mine (average of 0.039).
- Recharge to the Namurian sandstone and shale outcrop at Barley Hill flows north and northwest towards the River Lagan. Runoff from this outcrop on the eastern flank of Barley Hill will flow onto the limestone outcrop where it will contribute to limestone recharge, particularly at karst features, such as the swallow hole at KF01.
- Groundwater levels in the Namurian bedrock north of the River Lagan are drawn down by dewatering at the gypsum mine such that a groundwater divide (see Figure 6) occurs in the vicinity of Descart Lough. 'Namurian' groundwater to the north and west of the divide flows to the mine, and to the south and east, flows past the test wells to the River Lagan.
- There is a groundwater high at the limestone bedrock outcrop at Killygally and Mokeeran. This suggests that the limestone groundwater flow from this area would be south towards the River Lagan. Long term pumping at the test wells could potentially divert some of this flow away from the river and towards the boreholes.
- The groundwater level data suggest that the vertical hydraulic gradient is downwards at Barley Hill (recharge) and upwards at the River Lagan/test wells (discharge).

9.3 Hydrochemistry and water quality

Boreholes BW02 and BW03 are not included in any routine monitoring programmes. The water quality was assessed during the initial pumping tests on the boreholes in 1996 (BW03) and 1998 (BW02), and again during the 2003 pumping test. The laboratory results for the monitoring events have been compared to the EU Drinking Water Council Directive 98/83/EC Maximum Admissible Concentrations (MAC) and the European Communities Environmental Objectives (Groundwater) Regulations 2010 recently adopted in Ireland under (S.I. No. 9/2010) as part of the implementation of the Water Framework Directive (2000). The data are summarized graphically in Figures 6 to 8 for borehole BW02, and Figures 9 to 11 for borehole BW03. The data interpretation is summarised below. Dolomite saturation indices for boreholes BW02, TW12, BW03 and TW11 are shown in Table 9-1⁴. The available data are tabulated in Table A1.6 in Appendix 1.

⁴ In general a Saturation Index (SI) range of -0.5 to +0.5 is indicative of saturation for the relevant mineral. The saturation index for each sample was calculated using major ion concentration data with the PHREEQC modelling code.

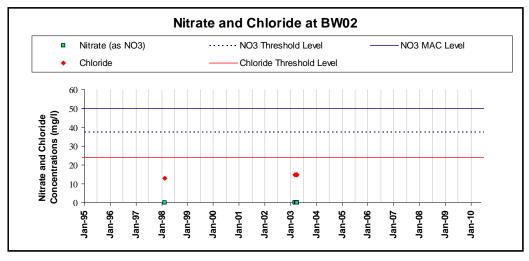


Figure 8 Key Indicators of Agri and Domestic Contamination (BW02): Nitrate and Chloride

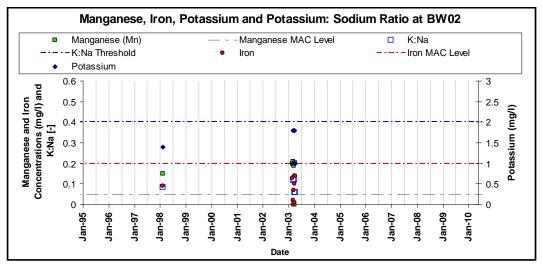


Figure 9 Key Indicators of Agri and Domestic Contamination (BW02): Mn, Fe, K and K:Na ratio

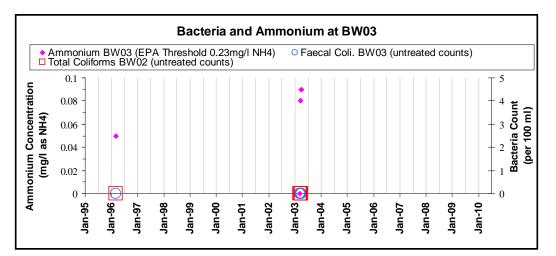


Figure 10 Key Indicators of Agri and Domestic Contamination (BW03): Bacteria and Ammonium

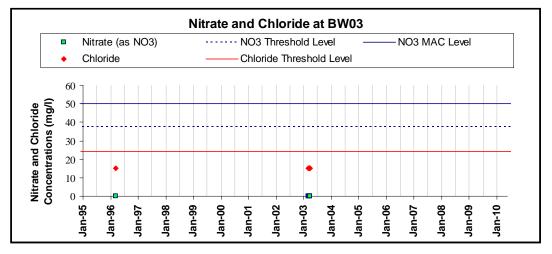


Figure 11 Key Indicators of Agri and Domestic Contamination (BW03): Nitrate and Chloride

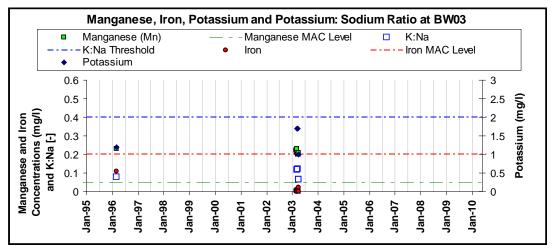


Figure 12 Key Indicators of Agri and Domestic Contamination (BW03): Mn, Fe, K and K:Na ratio

<u>BW02</u> (screened 10.2 to 19.2 mbgl in probable dolomitised limestone within the Milverton Group Limestone)

• The water is moderately hard (165 to 216 mg/l as CaCO₃) and has a calcium bicarbonate hydrochemical signature with a significant magnesium component. All samples from the

borehole were saturated with respect to dolomite (see Table 9-1). The average conductivity is 376 μ S/cm and average pH is slightly alkaline at 7.8.

- No total or faecal coliforms were detected. Ammonium was detected at the laboratory detection limit on one out of three samples during the 2003 pumping test but was below all relevant assessment thresholds. Nitrate was not detectable in any of the samples in 1998 or 2003. This may indicate confined reducing conditions in the aquifer. Chloride concentrations were at natural background concentrations, with an average of 15 mg/l.
- The sulphate, potassium, sodium, magnesium and calcium levels and the K:Na ratio are within normal ranges.
- The concentrations of iron are detectable but below the MAC value. Manganese concentrations exceeded the MAC value in all samples (Figure 8). Elevated manganese concentrations suggest reducing conditions in the aquifer.
- Other trace metals were either within the normal range for good quality drinking water or were not detected. Similarly, organic compounds and herbicides have not been detected.

<u>BW03 (inflow from cavern at 82 to 89 mbgl in probable dolomitised limestone within the Milverton</u> <u>Group Limestone</u>)

- The water is moderately hard (152 to 195 mg/l as CaCO₃) and has a calcium bicarbonate hydrochemical signature with a significant magnesium component. All samples from the borehole were saturated with respect to dolomite. The average conductivity is 347 µS/cm and average pH is slightly alkaline at 7.7.
- No total or faecal coliforms were detected at the borehole. Ammonium was detected in several samples but was below all relevant assessment thresholds.
- Nitrate was not detectable in any of the samples in 1998 or 2003. This may indicate confined reducing conditions in the aquifer. Chloride concentrations were at natural background concentrations, with an average of 15 mg/l.
- High turbidity and silt was recorded during both pumping tests indicating that the cavern may be at least partially filled with unconsolidated sediments.
- The sulphate, potassium, sodium, magnesium and calcium levels and the K:Na ratio are within normal ranges.
- The concentrations of iron are detectable but well below the MAC value. Manganese concentrations exceeded the MAC value in all samples (Figure 8). Elevated manganese concentrations suggest reducing conditions in the aquifer.
- Other trace metals were within either within the normal range for good quality drinking water or were not detected. Similarly, organic compounds and herbicides have not been detected.

The data suggest that the groundwater from both boreholes is unpolluted but is affected by elevated manganese concentrations resulting from confined, reducing aquifer conditions.

Borehole ID	Date	SIDol	Borehole ID	Date	SIDol	Borehole ID	Date	SIDol
TW11	05/02/1998	-1.3	BW03	11/03/2003	-0.2	BW02	11/03/2003	0.0
TW11	16/04/2002	-0.5	BW03	25/03/2003	-0.4	BW02	25/03/2003	0.1
TW11	22/04/2002	-0.8	BW03	04/04/2003	-0.4	BW02	04/04/2003	-0.1
BW03	07/03/1996	0.2	BW02	12/02/1998	0.6	TW12	12/02/1998	0.8

Table 9-1: Dolomite Saturation Index (SI) Values

9.4 Aquifer characteristics

Boreholes BW02 and BW03 predominantly abstract water from dolomitised limestone layers within the Milverton Group Limestone. There may also be a component of flow from the northwest from the Namurian Shale bedrock into the shallow borehole BW02. The limestone is classified by the GSI as a *Regionally Important Karstified Aquifer (Rk)*. The Namurian shale rock unit is classified as a *Poor Aquifer (Pu)* while the Namurian sandstone and the Undifferentiated Namurian rock units further west are classified as *Locally Important Aquifers which are Generally Moderately Productive (Lm)* (see Figure 6). Boreholes BW03 and TW12 are artesian, indicating that the deeper limestone aquifer is confined or at least leaky confined (with upwards leakage)⁵. The data suggest that the groundwater intersected by borehole BW02 is confined by the CLAY overburden.

At borehole BW02, the majority of the flow intersected by the shallow borehole occurred in the heavily weathered top 5 m of the aquifer (WYG, 2003). This shallow, transmissive layer is likely to be present at rockhead across the study area. It is likely to be particularly transmissive in weathered dolomitised limestone strata such as at borehole BW02. Deeper groundwater flow occurs along bedding planes and through faults, fractures and fissures in the bedrock in both the *Lm* and *Rk* aquifers. In the *Rk* aquifer, the permeability of many of the fracture and fissure pathways has been enhanced by karstification. This characteristic will be exacerbated where dolomitisation creates additional interconnected void space. Evidence of large karst conduits with large groundwater inflows occurred at depth in probable dolomitised limestone strata in boreholes BW03 and OW05. The 1,260 m³day, high specific capacity (360 m³/day) abstraction sustained over a 6 week pumping test on borehole BW03 suggests that extensive karstification and dolomitisation occurs in the vicinity of the borehole in order to sustain the large abstraction.

It is likely that the karstified aquifer is anisotropic (i.e. greater transmissivity in the north-south direction than east-west). Karstification is likely to be focused along the north-south oriented faults and joints in the bedrock, and possibly along bedding planes which also strike north-south. This gives increased transmissivity in these directions. Boreholes BW03 and OW05 intersect caverns and are aligned north-south, which supports this suggestion. Furthermore, yields in boreholes to the north of the Barley Hill outcrop (e.g., BW03 and TW11) are greater than those in boreholes to the east (e.g., GSI Well Database record no. 2629SEW076).

Analysis of the 2003 pumping test data for boreholes BW02 and BW03 suggests a transmissivity range for the *Rk* aquifer of 47 m²/day to 114 m²/day (average of 80 m²/day). Transmissivity at borehole TW03 located 3 km south-southeast of the test wells and intersecting the Namurian bedrock *Lm* aquifer, is recorded to have a transmissivity of 28 m²/day (KTC, 1996).

Drawdown of 5.45 m was observed in the unpumped borehole TW12 (open hole 17 to 135 m in probable Dinantian limestone and dolomitised limestone) during the 2003 multi-well test. This drawdown may have been induced by either BW02 (shallow and 5 m from TW12) or BW03 (deep and 250 m from TW12), as both were pumping simultaneously.

Bulk aquifer permeability has been estimated from transmissivity by dividing by the length of the screened/open-hole section of the borehole (9 m for BW02). For borehole BW03, this is taken as the 7 m depth interval of the cavern at the base of the borehole. The estimated bulk aquifer permeabilities (K) are shown in Table 9-2.

The velocity of water moving through the aquifers to the boreholes is estimated using Darcy's Law:

Velocity (V) = (K x Groundwater Gradient (i)) / porosity (n)

⁵ Confined aquifers occur where the groundwater in the water bearing rock layer is held under pressure by overlying impermeable / less permeable "confining" layers. Where the confining layer has some permeability leakage occurs.

The average natural gradients in the Rk and Lm aquifers are estimated at 0.021 and 0.039 respectively. No data on bedrock porosity are available however, the fracture porosities of the Rk and Lm aquifers are estimated at 0.05 based on experience of similar aquifers at other locations.

i abie e Ii illaleatire / iqaii			
Parameters	Source of Data	<i>Rk</i> aquifer (BW03)	<i>Lm</i> aquifer (BW02)
Transmissivity (m ² /d)	Calculated (based on pumping test data)	80	28
Permeability (m/d)	Estimated from T value (average) divided by the average screen/open hole length	10	0.22
Effective Porosity	Assumed (based on GSI regional experience)	0.05	0.05
Groundwater gradient	Assumed based on topography and field observations	0.021	0.039
Velocity (m/d)	calculated based on above	4.2	0.17

Table 9-2: Indicative Aquifer Hydraulic Parameters

The average velocity of groundwater moving through the Rk and Lm aquifers is estimated as 4.2 m/d and 0.17 m/d respectively. The aquifer parameters are summarized in Table 9-2.

10 Zone of Contribution

The Zone of Contribution (ZOC) is the complete hydrologic catchment area to the test wells (source), or the area required to support an abstraction from long-term recharge. The size and shape of the ZOC is controlled primarily by (a) the total discharge, (b) the groundwater flow direction and gradient, (c) the subsoil and rock permeability and (d) the recharge in the area. This section describes the conceptual model of how groundwater flows to the source, including uncertainties and limitations in the boundaries, and the recharge and water balance calculations which support the hydrogeological mapping techniques used to delineate the ZOC.

10.1 Conceptual model

The test wells BW02 and BW03 abstract from the *Rk* limestone aquifer. Borehole BW02 is shallow and may also receive a minor input from the Namurian *Lm* aquifer immediately to the northwest. BW03 is deep and intersects a cavern which is considered to be in a dolomitised limestone layer of the *Rk* aquifer. Vertical hydraulic gradients at the boreholes, which result in artesian conditions in BH03 and TW12, suggest that upwards flow of confined groundwater is occurring in the vicinity of the boreholes. As such BW02 is also likely to be influenced by discharge from the deeper, confined, dolomitised limestone strata. Water quality data from each of the boreholes indicate saturation with respect to dolomite, reinforcing the hypothesis of the abstractions deriving from dolomitised strata. To date the groundwater has been unpolluted but with naturally elevated levels of manganese which are common in confined aquifers.

The *Rk* aquifer is mainly recharged at bedrock outcrop and karst features on Barley Hill, and where the overlying subsoils are thin. As well as direct recharge to the limestone outcrop, karst features are also likely to intercept runoff from the Namurian outcrop on the eastern flank of the crest of Barley Hill. Groundwater flow is mainly northwards from Barley hill along preferential karst flow paths with the River Lagan (and possibly nearby low-lying lakes) being the most likely natural discharge boundary. Flow to the south is prevented by a no flow boundary at the southern end of Barley hill, where the limestone abuts *Pu* and *Pl* aquifers. A minor component of groundwater flow is directed east off Barley Hill in the direction of steepest hydraulic gradient, but the magnitude of

the flow is likely constrained by low transmissivity in that direction. Abstraction from the test wells is likely to induce northerly flow underneath the river to the boreholes. Groundwater flow from the north in the *Rk* aquifer currently appears to be directed toward the River Lagan.

The *Lm* aquifer to the northwest of the test wells is recharged by diffuse infiltration. The data suggest that the bulk of this recharge flows northwest toward the Drummond gypsum mine dewatering system. A southwest to northeast groundwater divide in the vicinity of Descart Lough separates the test wells from the dewatering system. Recharge to the southeast of the divide will flow towards the Lagan River in the weathered upper bedrock zone. There is only a small recharge area to the southeast of the divide such that groundwater flow volumes from this region are likely to be low in comparison with the *Rk* aquifer. A small component of the *Lm* aquifer flow may discharge into the weathered upper *Rk* aquifer and be intercepted by BW02. Direct recharge to the *Lm* aquifer at Barley Hill is expected to flow north and northwest to the River Lagan.

The conceptual model for the Descart study area is illustrated in the cross section in Figure 13.

10.2 Boundaries of the ZOC

The ZOC has been delineated across both the Rk and Lm aquifers. A single ZOC has been delineated for both boreholes. The boundaries of the areas contributing to the test wells are considered to be as follows (Figure 14):

In the *Rk* aguifer the **southeastern boundary** is the no-flow boundary between the *Rk* aguifer and the Pu and Pl aguifers to the south. The southern and northern extremes of the western **boundary** are defined by the geological boundary between the limestone and Namurian shale. To the west of this the limestone becomes confined and does not receive any recharge. For the middle section, the ZOC boundary extends west of the geological boundary to account for runoff from the eastern, upper slopes of Barley Hill, which is likely to flow onto the limestone surface and enhance the limestone recharge either diffusely or at karst features. As such the majority of the western boundary is defined by the topographic divide along the top of Barley Hill. The **northeastern boundary** is delineated with the same orientation as the geological faults and karst preferential flow paths. The positioning of the boundary has been determined by the water balance (Section 10.3), with the boundary given an easterly position sufficient to include the required recharge footprint within the ZOC. The northern boundary for the Rk aquifer curves around the north side of BW02 from the northeastern boundary to intersect the limestone geological boundary. The separation distance from the borehole is conservatively based on the Uniform Flow Equation downgradient distance (x₁) (Todd, 1980). This is calculated to be 130 m based on the average parameters from Table 9-1:

 $x_{L} = Q / (2\pi * T * i)$ where:

Q is the daily pumping rate (proposed maximum demand for the scheme = $1400 \text{ m}^3/\text{day}$); T is the *Rk* aquifer Transmissivity (taken from aquifer characteristics); and i is gradient in the *Rk* aquifer.

A small extension has been added to the ZOC in the <u>Lm aquifer to the northwest of borehole</u> <u>BW02</u>. This is to account for the possibility of some groundwater in the *Lm* aquifer discharging into the upper weathered *Rk* aquifer and then into the borehole. The northwestern boundary of this extension is taken as the *Lm* aquifer groundwater divide. The southwestern and northeastern boundaries are conservatively delineated as flowlines (+/- 20° to allow for possible flow direction variation) which discharge into the *Rk* aquifer ZOC area. It is considered that pumping from BW02 will have a negligible impact on the position of the groundwater divide, as the abstraction from borehole BW02 will predominantly derive from the *Rk* aquifer dolomitised limestone.

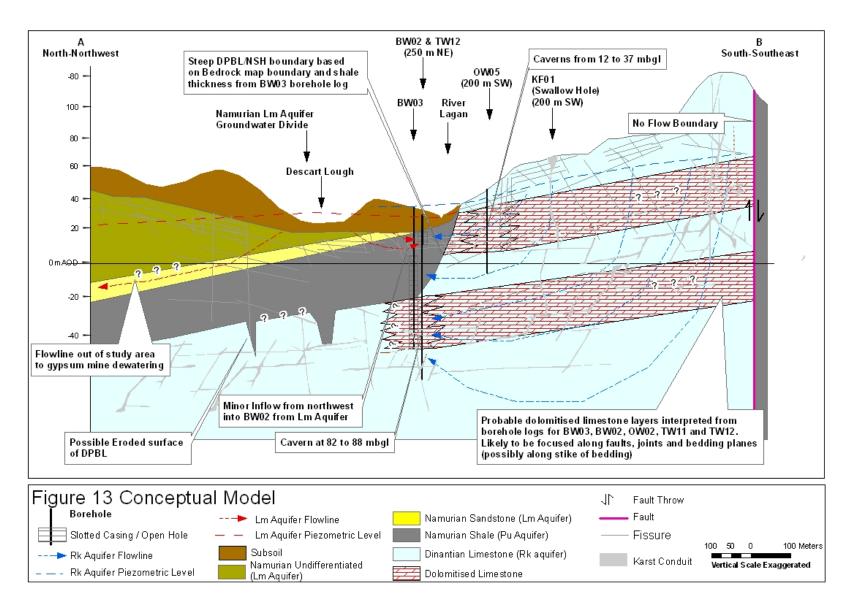
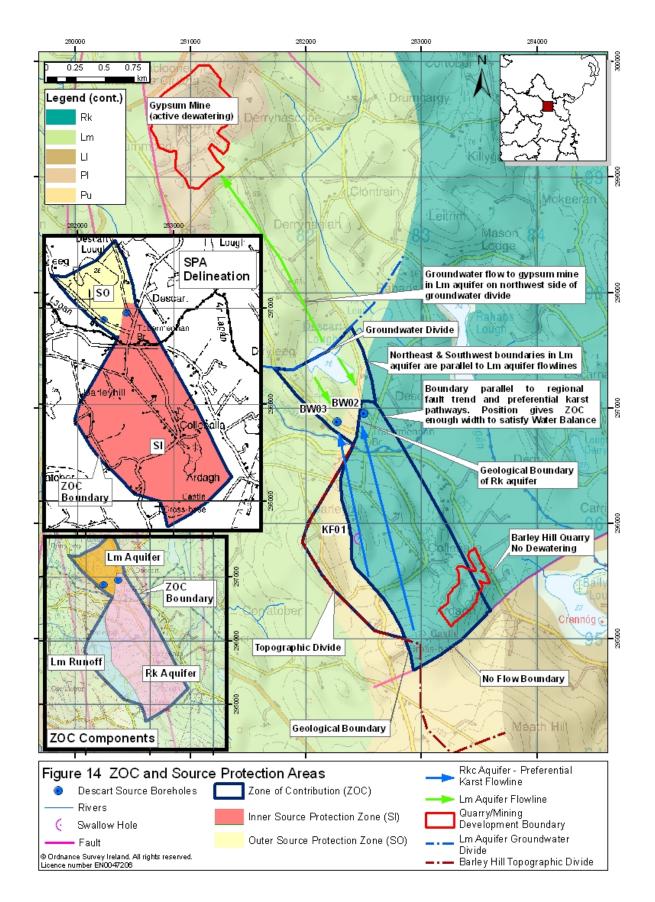
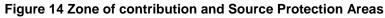




Figure 13 Conceptual Model

10.3 Recharge and water balance

The vast majority of the water abstracted from boreholes BW02 and BW03 is expected to come from the Rk aquifer. As such, the recharge rate and water balance have been calculated for the Rk aquifer component of the abstraction alone. The calculation does not include the minimal input from the Lm aquifer northwest of BW02, and additional contributions from runoff via karst point recharge which are difficult to quantify, and so the resulting ZOC is likely to be conservative.

The term 'recharge' refers to the amount of water replenishing the groundwater flow system. The recharge rate is generally estimated on an annual basis, and assumed to consist of input (*i.e.* annual rainfall) less water loss prior to entry into the groundwater system (*i.e.* annual evapotranspiration and runoff). The estimation of a realistic recharge rate is important in source protection delineation, as it will dictate the size of the ZOC to the source (and therefore the Outer Source Protection Area). The recharge is estimated as follows.

Potential recharge is equivalent to 597 mm/yr *i.e.* (Annual Effective Rainfall, see Section 6).

Actual recharge has been estimated to be 481 mm/yr, which is 81% of potential recharge; this value is based on averaging of the recharge for the different settings outlined in Table 10-1.

Runoff losses: 116 mm (19% of potential recharge). Rejected potential recharge is assumed to runoff to surface water *via* surface and interflow.

These calculations are summarised in Table 10-2.

			% Area	Recharg Coefficie Guidanc	ent	Chosen Recharge Coefficient	Calculated Recharge Component
Vulnerability	Location in Study Area	Additional Factors		Inner Range	Outer Range		(mm/yr)
Low	Low permeability till subsoils in the vicinity of the test wells and on the crest of Barley Hill	Moderate to steep slope on Barley Hill and drumlins.	0.8	5 - 15%	2 - 20%	0.05	3.9
Moderate	Moderate permeability alluvial subsoils to southeast and south of test wells.	Low drainage density	1.2	30 - 40%	25 - 60%	0.5	6.0
	Thinner low permeability till subsoils in the vicinity of the test wells and on the crest of Barley Hill	Moderate to steep slope on Barley Hill and drumlins.	1.2	10 - 20%	5 - 30%	0.1	5.8
High	Thinner moderate permeability till and alluvial subsoils to southeast and south of test wells.	Low drainage density	2.7	50 - 70%	35 - 80%	0.7	13.0
	Thin low permeability till subsoils in the vicinity of the test wells and on the crest of Barley Hill	Moderate to steep slope on Barley Hill and drumlins.	2.3	23 - 30%	10 - 40%	0.23	10.9

 Table 10-1 Recharge coefficients for the *Rk* aquifer component of the ZOC area

			% Area	Recharg Coefficie Guidanc	ent	Chosen Recharge Coefficient	Calculated Recharge Component
Vulnerability	Location in Study Area	Additional Factors		Inner Range	Outer Range		(mm/yr)
Extreme (E)	Till subsoils to southeast and south of test wells with well drained soils.	Low drainage density. Karst Features. Steep Slope.	29.1	50 - 70%	45 - 80%	0.75	139.8
	Till subsoils to east and south of test wells with poorly drained soils	Low drainage density	1.8	25 – 40%	15 - 50%	0.4	8.8
Extreme (X)	Bedrock outcrop at Barley Hill and Killygally/Mokeeran	Low drainage density. Karst Features. Steep Slope.	60.9	80 – 90%	60 – 100%	0.9	292.8

Table 10-2 Recharge Calculation Summary for Rk aquifer component of the ZOC area

Parameter	Coefficient	Rate
Average rainfall (R)		1013 mm/yr
Estimated P.E.		438 mm/yr
Estimated A.E. (95% of P.E.)		416 mm/yr
Effective rainfall		597 mm/yr
Potential recharge		597 mm/yr
Averaged runoff losses	(19%)	116 mm/yr
Bulk recharge coefficient	0.81	
Recharge		481 mm/yr

The water balance calculation states that the recharge over the area contributing to the source should equal the discharge at the source. At a recharge of 481 mm/yr, an average yield of 1,408 m³/day, which is the proposed scheme yield, would require an *Rk* aquifer recharge area of 1.07 km². During the February 2003 multi-well pump test, boreholes BW02 and BW03 were pumped at a combined rate of 2,160 m³/day. This is approximately 150% of the target yield. The ZOC has been delineated conservatively for this maximum tested value to allow for unexpected increases in demand and for expansion of the normal (100% demand) ZOC under prolonged drought conditions. This requires an *Rk* aquifer recharge area of 1.6 km². The area of the ZOC described above is 1.49 km² (equivalent to 1995 m³/day), which is slightly below the target area, and is shown in Figure 14.

Point recharge of runoff from the *Lm* aquifer area (0.41 km²) on the crest of Barley Hill has not been quantified, however it is likely to increase the total available recharge volume for the ZOC footprint to at least the 150% of proposed demand value of 2,160 m³/day.

In the same way as for the *Rk* aquifer, the bulk recharge coefficient for the northwestern ZOC extension onto the *Lm* aquifer is estimated as 0.06 (6%). The ZOC extension has an area of 0.35 km², which implies that the recharge to the ZOC from this additional area is only 35 m³/d.

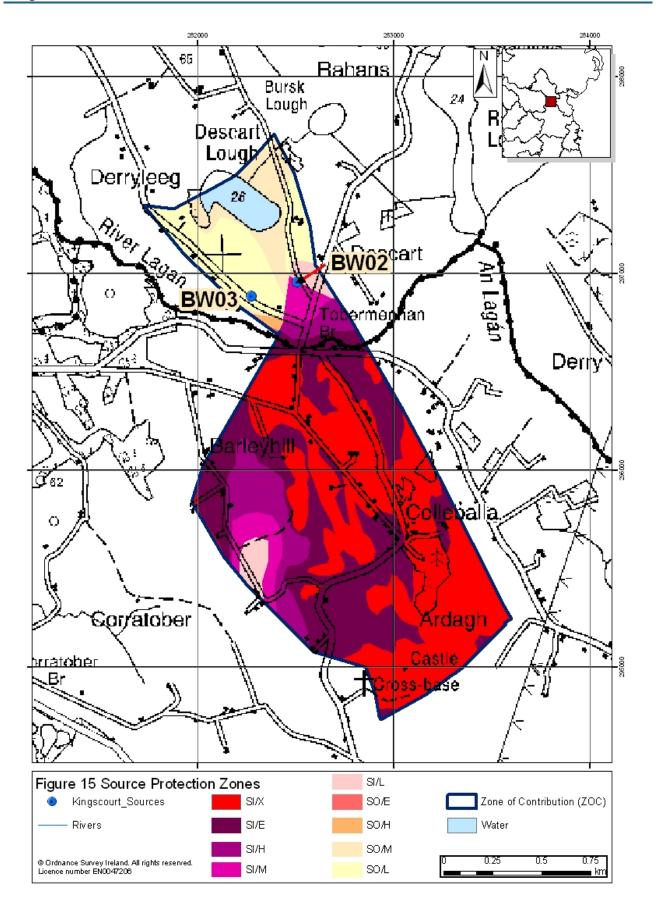
11 Source Protection Zones

The Source Protection Zones are a landuse planning tool which enables an objective, geoscientific assessment of the risk to groundwater to be made. The zones are based on an amalgamation of the source protection areas and the aquifer vulnerability. The source protection areas represent the

horizontal groundwater pathway to the source, while the vulnerability reflects the vertical pathway. Two source protection areas have been delineated, the Inner Protection Area and the Outer Protection Area.

The Inner Protection Area (SI) is designed to protect the source from microbial and viral contamination and it is based on the 100-day time of travel (TOT) to the supply (DELG/EPA/GSI 1999). Based on the indicative aquifer parameters presented in section 8.5, the groundwater velocity is 4.2 m/d and 0.17 m/d in the Rk and Lm aquifers respectively. The 100-day TOT distance therefore, is 420 m in the Rk aquifer and 17 m in the Lm aquifer. The Outer Protection area (SO) is the remainder of the ZOC outside the SI.

Parts of the ZOC delineated in the *Rk* aquifer lie outside the relevant 100-day TOT limit, however flow paths in individual karst conduits can greatly exceed the calculated average for the bulk aquifer. As such, the entire *Rk* aquifer ZOC is conservatively classified as SI. The extension of the ZOC onto the *Lm* aquifer on eastern flank of the crest of Barley Hill is also classified as SI because runoff from this area is likely to rapidly enter the karst system.


Borehole BW03 is cased off from the *Lm* aquifer such that inflow to the borehole only comes from the *Rk* aquifer at depth. Furthermore the strongly artesian *Rk* aquifer suggests that any leakage along the casing will be upwards out of the *Rk* aquifer rather than downwards from the *Lm* aquifer. As such, no SI zone is delineated around BW03 in the *Lm* aquifer. Nonetheless, BW03 is located 80 m inside the ZOC boundary, which provides protection to the area surrounding the wellhead. Borehole BW02 is physically sited in the SI zone on the *Rk* aquifer at a minimum of 50 m from the *Lm* aquifer. As such, it is already buffered by an SI zone exceeding the 17 m requirement of the *Lm* aquifer. As a result, no additional SI area has been delineated on the *Lm* aquifer footprint northwest of the boreholes. The *Lm* aquifer in this area is classified as SO.

The Inner and Outer Protection Areas are illustrated in Figure 14.

The groundwater Source Protection Zones across the entire ZOC are shown in Figure 15 and are listed in Table 11-1. They include SI/X, SI/E, SI/H, SI/M, SI/L, SO/H, SO/M and SO/L. Over 70% of the ZOC is designated as SI/X or SI/E.

Source I	Protection Zone	% of Total Area	Area (km²)
SI/X	Inner Source Protection area / Extreme vulnerability, ≤1 m subsoil	41.4	0.93
SI/E	Inner Source Protection area / Extreme vulnerability, <3 m subsoil	28.2	0.64
SI/H	Inner Source Protection area / High vulnerability	8.2	0.19
SI/M	Inner Source Protection area / Moderate vulnerability	4.3	0.10
SI/L	Inner Source Protection area / Low vulnerability	2.4	0.05
SO/E	Outer Source Protection area / Extreme vulnerability, <3 m subsoil	0.0	0.00
SO/H	Outer Source Protection area / High vulnerability	0.3	0.01
SO/M	Outer Source Protection area / Moderate vulnerability	5.3	0.12
SO/L	Outer Source Protection area / Low vulnerability	9.9	0.22

Table 11-1 Source Protection Zones for Entire ZOC Area

Figure 15 Source Protection Zones

12 Potential pollution sources

The two test wells currently have negligible well head protection and are vulnerable to direct contamination from surface spills or animal activity.

The landuse within the ZOC is primarily agricultural with numerous residential farms and pastureland for grazing animals. Agricultural activities such as grazing and landspreading of agricultural waste present a potential risk of microbial pollution to the boreholes as well as the potential for elevated concentrations of ammonia, nitrate, phosphate, chloride, potassium, BOD, COD, TOC and pesticides. Testing to date suggests that the water quality at the test wells is good, however testing has been infrequent and the wells have only been pumped during the testing period. Given the *Rk* aquifer classification and presence of large areas of extreme vulnerability within the ZOC/SI, the potential risk from cryptosporidium and viruses is high.

Several third class roads traverse the ZOC. The main potential contaminants from this source are surface water runoff contaminated with hydrocarbons and metals. However, the low traffic density locally, as well as the groundwater vulnerability around the boreholes, suggests that the risk of such contamination is low.

13 Conclusions

The Descart expansion of the Kingscourt Water Supply Scheme is proposed to comprise two production wells to be drilled at the sites of the existing test wells BW02 and BW03. The boreholes will predominantly abstract water from the dolomitised limestone bedrock, which is classified as an *Rk* aquifer. The total scheme demand is 1,408 m³/day. The existing test wells have a proven yield of 2,160 m³/day, approximately 150% of the proposed total demand. The ZOC for the test wells has been delineated conservatively on the basis of a demand of 2,160 m³/day.

The delineated ZOC contains areas classified as SI and SO. Parts of the SI are classified as Extreme vulnerability with rock at or very close to the surface in places. Groundwater quality appears to be relatively good but this is based on just limited testing to date.

The *Rk* component of the ZOC (i.e. the main source for the abstraction) encompasses an area of 1.5 km^2 which incorporates a diffuse recharge footprint of 1,955 m³/day, *i.e.* approximately 150% of the total demand of the scheme. There is a further contribution of approximately 24 m³/day from the *Lm* aquifer component northwest of the boreholes, and an unquantified point-recharge component from runoff from the eastern flank of Barley Hill.

The Source Protection Zones are based on the current understanding of the groundwater conditions and the available data. Additional data obtained in the future may require amendments to the protection zone boundaries.

14 Recommendations

Comprehensive well head protection should be implemented at all trial well locations across the study area including the test wells BW02 and BW03 and at the proposed production wells once these are commissioned.

A suitable groundwater level monitoring regime should be set up across the ZOC to identify annual fluctuation in the groundwater flow directions during the current non-pumping conditions and changes to these baseline conditions once full scale pumping is initiated.

Groundwater quality at the boreholes should be monitored closely in the first year after commissioning of the boreholes to confirm the unpolluted condition of the groundwater through the entire annual cycle. The good quality experienced to date may be because of reasonably long residence times in the confined aquifer conditions. When the wells start pumping the confined status may change in parts of the aquifer, along with, consequently, the water quality.

A tracer test should be carried out once the full scale pumping is established in order to confirm flowlines to the borehole from the Barley Hill area.

The ZOC contains SI/X and SI/E designations. Source specific landspreading exclusion zones should be developed for the test wells to take account of the landspreading risk associated with this designation.

15 References

DELG/EPA/GSI, 1999. Groundwater Protection Schemes. Dept. of the Environment & Local Government; Environmental Protection Agency; Geological Survey of Ireland.

EPA website. www.epa.ie. September 2010.

Fitzgerald, D. and F. Forrestal, 1996. Monthly and annual averages of rainfall for Ireland 1961 to 1990. Meteorological Service Climatological Note No. 10. Glasnevin Hill, Dublin 9.

Fitzsimons, V., Daly, D., Deakin, J., 2003. GSI Guidelines for Assessment and Mapping of Groundwater Vulnerability to Contamination. Geological Survey of Ireland.

Gardiner, P.R.R and McArdle, P (1992) The Geological setting of Permian gypsum and anhydrite deposits in the Kingscourt district, Counties Cavan, Meath and Monaghan. In: Bowden, A.A., Earls, G. O'Connor, P.G. and Pyne, J.F. (1992) The Irish Minerals Industry 1980-1990. Irish Association for Economic Geology, 301-316.

Geraghty, M. and McConnell, B. 1999. Bedrock Geology 1:100,000 Scale Map, Sheet 13. Meath. Geological Survey of Ireland

GSI website. www.gsi.ie. September 2010.

GSI 2002. County Monaghan Groundwater Protection Scheme Main Report. Geological Survey of Ireland.

GSI, 2004a. Carrickmacross Groundwater Body – Water Framework Directive Initial Characterisation Summary – 1st Draft. Geological Survey of Ireland.

GSI, 2004b. Kingscourt Groundwater Body – Water Framework Directive Initial Characterisation Summary – 1st Draft. Geological Survey of Ireland.

IWWG 2005. Guidance on the Assessment of the Impact of Groundwater Abstractions. Guidance Document No.GW5. Intergovernmental Working Group on Groundwater.

KTC, 1996. Report on Groundwater Investigations at Kingscourt, County Cavan. K.T. Cullen & Co. Ltd.

KTC, 1998. Letter Report RE: Trial Well Drilling Kingscourt 1998 (TW11, 12 & 13). K.T. Cullen & Co. Ltd.

KTC, 1999a. Kingscourt Regional Water Supply Assessment of Groundwater Abstraction Impact. K.T. Cullen & Co. Ltd.

KTC, 1999b. Report on the Drilling & Testing of TW14 at Gibber Bridge, Kingscourt, Co. Cavan. K.T. Cullen & Co. Ltd.

KTC, 2001. Interim Report on the Drilling & Testing Programme at Kingscourt, Co. Cavan. K.T. Cullen & Co. Ltd.

Teagasc, 2006. EPA Subsoil Map. Teagasc, Kinsealy, Dublin.

Minerex, 2005. Report on baseline groundwater hydraulics and hydrochemistry. MEL Doc. Ref.: 1632-319 (Final). Minerex Environmental Limited

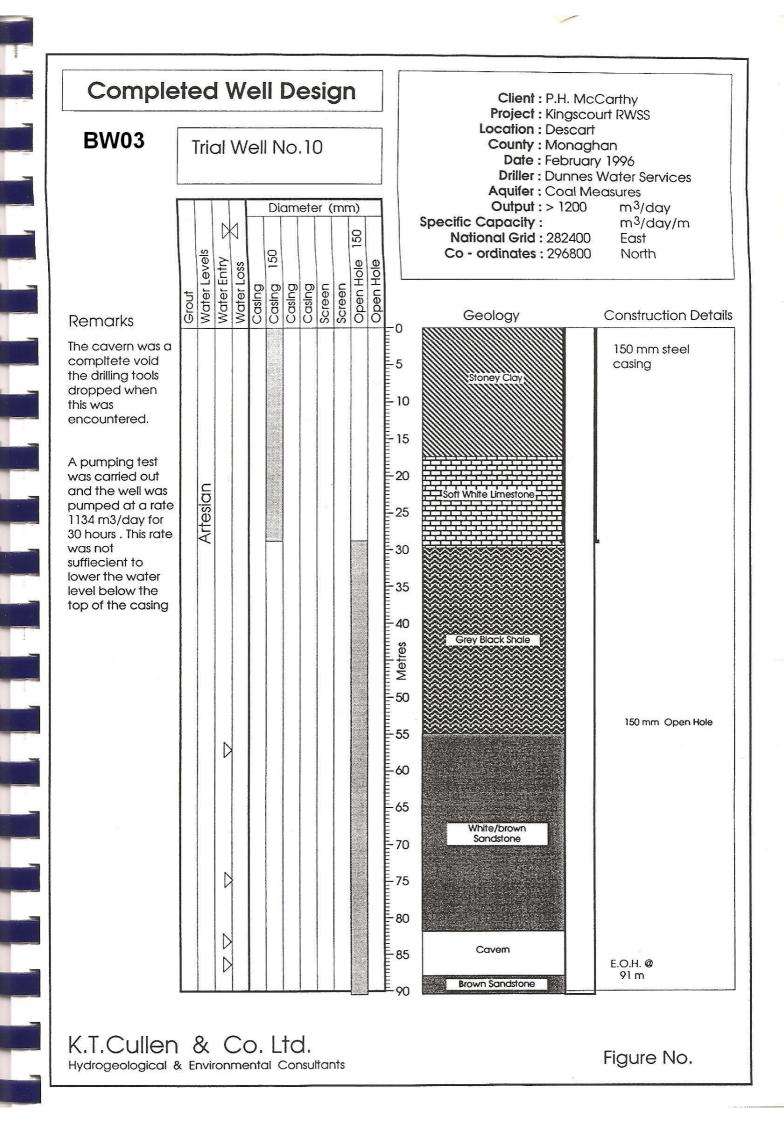
Minerex, 2008. Hydrogeological assessment of proposal to treat/reduce sulphate levels in mine water. MEL Doc. Ref.: 1632-725 (Final). Minerex Environmental Limited

Minerex, 2009a. Report on baseline groundwater chemistry at Irish Gypsum mine & processing sites and proposal for the setting of guideline values. MEL Doc. Ref.: 1632-756 (Final 11-03-09). Minerex Environmental Limited.

Minerex, 2009b. Annual groundwater monitoring report for Gypsum Industries mine and processing sites 2009. MEL Doc. Ref.: 1632-1008 (Final). Minerex Environmental Limited.

Minerex, 2010. Database of Groundwater Elevation Measurements for the Groundwater Monitoring Network of the Gypsum Limited Mine at Drummond, Carrickmacross, Co. Monaghan. Minerex Environmental Limited.

Todd, D.K., 1980. Groundwater Hydrology. 2nd Edition New York: John Wiley & Sons.


WYG, 2002. Report on Drilling and Multi-Well Pumping Test Programme at Kingscourt, Co. Cavan. White Young Green – Ireland.

WYG, 2003. Report on a Multi-Well Pumping Test Programme at Kingscourt, County Cavan. White Young Green – Ireland.

APPENDIX 1

- Borehole Logs BW02 & BW03
- Table A1.1 Kingscourt Trial Wells & Observation Wells Data from KTC & WYG 1995 to 2003
- Table A1.2 Kingscourt Trial Wells & Observation Wells Groundwater Level Data from KTC & WYG 1995 to 2003
- Table A1.3– Kingscourt Trial Wells & Observation Wells WYG Groundwater Level
 Data November 2001 to March 2002
- Table A1.4 Kingscourt Trial Wells & Observation Wells Data from PC Fieldwork, WYG 2003 and Gypsum Ltd (Minerex) 2003 & 2010
 - Table A1.5 GSI Well Database Records within the Study Area
 - Table A1.6 –Water Quality Data For Kingscourt Trial Wells and Gypsum Ltd Monitoring Wells
 - Figure A1.6 Data Points in the Vicinity of Descart PWS Site
 - List of abbreviations used in Appendix tables

WELL LOG							
Well No. TW 13	Descriptio	on Kings	court Water S	Location Descart, Co.Mon	naghan		
BW02	Date Drill	ed Jar	nuary 1998	Driller Dunnes Water Servic	es		
			aran olan araka a	Scale			
Water Level (mbtoc)	-0.02		nmeters in mm pths in metres	Vertical Horizontal 200.0	30.0		
Depth [m] Hole An	nulus Cas	ing Screen		Lithology	Elev. [m]		
2	NT			Gravelly Clay			
6	9 <u>.14</u> 201			Sandy/silty gravels, fine upwards, 4000 g.p.h.			
	20	10.2	12	Very fractured/weathered bedrock, 15000 g.p.h.	-10		
16				Densely cemented red sandstone	16		
20	192	2 192	<u>19.2</u>				
26							
300							
			3				
40					- 40 		

										
Namo	Sourco	Other Names	v	v	Drill Date	Driller	Casing	Screen / OH	Final Diameter	Water Strikes
Name	Source	Other Names	^	1	Drin Date	Driller	Casing	Scieen/ On	mm	mbgl
	KTC 1998		279152			Dunnes Water Services Ltd		OH 5 - 91.44m	200	
TW02 TW03	KTC 1998 KTC 1998		280853	293118 293825		Dunnes Water Services Ltd Dunnes Water Services Ltd	150mm SC to 8m 150mm to 12m	OH 8 to 91.4m OH 12 to 137m		27, 29, 34, 52, 56 and 76m 28, 40, 73, 123 and 134m
	KTC 1998		281217	292498	Feb-95	Dunnes Water Services Ltd	150mm SC to 6m	OH 6m to 91m	150	53 and 66m
		TW05, TW5,					300mm SC to 70m with	Galvanised 200mm, 0.4mm slot wellscreen 72 to 113 with closed		
BW01	KTC 1998	Borewell No.1	280006	297801	May-95	Dunnes Water Services Ltd	0 to 72m 200mm SC to 20m, 150mm	sump 113 to 120m.	200	28m, 40m, 74 to 115m
TW06	KTC 1998		279600		Jul/Aug-95	Dunnes Water Services Ltd	SC 0 to 45m	150 mm OH 45 to 99m	150	Main inflow (45 - 52), (82-88)&(94-
TW07	KTC 1998		281689	294534	Aug-95	Dunnes Water Services Ltd	150mm SC to 14m	OH 150mm 14 to 121m	150	109)m, WS @ 25, 48, 82 and 95
TW08	KTC 1998		280528	295768	Feb-96	Dunnes Water Services Ltd	150mm SC to 26 m	OH 26 to 107m	150	Main inflow (88-94)m. WS @ 80 & 84m.
TW09	KTC 1998	PW9	282098	296445	Feb-96	Dunnes Water Services Ltd	200mmSC to 30m	OH 30 to 82m	200	25, 28, 45, 54, 69 and 79m.
BW03	KTC 1998	TW10, Borewell No.3	282281	296881	Feb-96	Dunnes Water Services Ltd	150mm SC to 29m	OH 29m to 91m	150	Main Inflow (82 - 88m, cavern). Inflows @ 57, 74 & cavern.
							OH at 200mm to 91m??,	125mm uPVC screen 64.8 to	200 OH with	Main inflow in white Sst below 64.8m
TW11	KTC 1999		282255	296593	Jan-98	Dunnes Water Services Ltd	125mm uPVC liner 0 to 64.8	91.4m	125mm PVC liner 150 OH,	(540 to 1080m3/d) Inlfow in Gravels. Large inflow in upper Red Sst (cased off). Lst Inflow ~ 500-
TW12	KTC 2000		282524	296952	Jan-98	Dunnes Water Services Ltd			collapsing	700m3/d below 122m
		TW13,								Water in gravels; Main Inflow 8.8 to
BW02	KTC 2001	Borewell No.2	282514	296953	Jan-98	Dunnes Water Services Ltd	200mm SC to 19.2m	Casing slotted 10.2 to 19.2m	200	10.2m.
										Main inflow in cavities in Sst (50 to 55mbgl, 1620m3/d); Lesser inflow at 40
TW14	KTC 1999		280957	296468	19/02/1999	Dunnes Water Services Ltd	200mm SC ro 37.8m	OH at 200mm 37.8 to 91m	200	to 45m (324m3/d)
							500mm SC to 5m, 250mm			
							SC 0 to 24.38 (300mm hole), 200mm SC grouted in			Major Inflows between (66 & 68)m & at
TW14A	KTC 2002		280915	296565	21/11/2001	Dunnes Water Services Ltd	place 0 to 63.09m	OH at 200mm 63.09 to 91.44m	200	90m Inflow at 24 to 31.4m sealled off by
							500mm SC to 5m, 200mm SC grouted into rock at 0 to			200mm casing; Inflow @ 45m; Main inflow at in shale just below gypsum at
TW15	KTC 2002		280790	296103	26/10/2001	Dunnes Water Services Ltd	45.7m 500mm SC to 5m, 200mm SC grouted into rock at 0 to	OH at 200mm 45.7 to 122m	200	82m, increasing below 82m
TW16	KTC 2002		281631	296499	02/11/2001	Dunnes Water Services Ltd	38m	OH at 200mm 38 to 107m OH @ 150mm 37 to 69m;	200	Main inflows at 45m & at 53m, no signif inflow below 53m
OW01	KTC 2002		280418	295625	09/11/2001	Dunnes Water Services Ltd	200mm SC to 7m, 150mm SC to 37m	125mm slotted PVC liner 0 to 65m	150 with 125mm PVC liner	Assume similar to TW08
OW02	KTC 2002		280820	296193	31/10/2001	Dunnes Water Services Ltd	200mm SC to 6m, 150mm SC to 37m	OH @ 150mm 38 to 61, 150mm SC slotted 24 to 30m	150mm	Inflow at 28 to 30m
							200mm SC to 6m, 150mm			
OW04	KTC 2002		281712	296497	26/10/2001	Dunnes Water Services Ltd	SC to 24.3m	OH @ 150mm 24.3 to 52	150mm	Inflow at 28 to 30m & 46 to 48m
OW05	KTC 2002		282240	296361	25/10/2001	Dunnes Water Services Ltd	150mm SC to 22m		150 with 125mm PVC liner	Inflow @ 20 to 22m, 42 to 44m
OW06	KTC 2002		281324	296115	24/10/2001	Dunnes Water Services Ltd	150mm SC to 25m		150 with 125mm PVC liner	Inflow @ 13 to 15m and 50 to 52m
C35/3c	NERDO 1981				01/06/1905		200mm SC to 52m, 150mm SC 0 to 82m	12m Johnson Well screen - assume 82-94m	150mm?	
MHPW1	KTC 2002		285214	294203						
MHPW2	KTC 2002		285214	294203						
MHOW	KTC 2002		285214	294203						
DW01	KTC 2002		280302	295472						
	KTC 2002		280442	295280						
DW03 DW04	KTC 2002 KTC 2002		282664	296576 296820						
	. 100E		202403	20020						
DW05	KTC 2002		-	-						
DW06	KTC 2002		281740	- 294418						
DW07	KTC 2003		282087	297002	1991					
DW08	KTC 2002		281806	297233						
DW09 BH02	KTC 2003 PC Fieldwo	DW10	281760 281735	297256 297430						
DW11 DW12	KTC 2003 KTC 2003		281650 281708	297388 297598						
DW13	KTC 2003 KTC 2003 KTC 2003		281708 281635 281602	297598 297643 297691						
DW15 DW16	KTC 2003 KTC 2003		282199 282638	297811 296949						
DW17	KTC 2003		282901	296834						
	1		282758	297289						
DW18	KTC 2003						1		l I	İ.
DW19	KTC 2003		282737	297576						
DW19 DW20			282737 280117 280058	297576 298051 297946						
DW19 DW20 DW21 DW22	KTC 2003 KTC 2003		280117	298051 297946 297283	1965					

TW01 KT0 TW02 KT0 TW03 KT0 TW04 KT0 3W01 KT0	ource TC 1998 TC 1998 TC 1998 TC 1998 TC 1998		mAOD Poolbeg								
TW01 KT0 TW02 KT0 TW03 KT0 TW04 KT0 3W01 KT0	TC 1998 TC 1998 TC 1998		mAOD Poolbeg								
TW01 KT0 TW02 KT0 TW03 KT0 TW04 KT0 3W01 KT0	TC 1998 TC 1998 TC 1998		mAOD Poolbeg	_							1
TW02 KT0 TW03 KT0 TW04 KT0 3W01 KT0 TW06 KT0	TC 1998 TC 1998			Туре		B Subsoil (KTC logs)	Lithology	WL Meas Ref	SWL	SWL Date Yield	Comments
TW02 KT0 TW03 KT0 TW04 KT0 3W01 KT0 TW06 KT0	TC 1998 TC 1998		inaccessible (2002)		m m 91.44 7	.5 Gravelly Clay	Permo-Triassic Sst		mbgl 2.5	Assumed Dec-94	
TW04 KT0 3W01 KT0 TW06 KT0			inaccessible (2002)			.5 Silty, gravelly Clay	Namurian Sandstones & Shales		2.03	Jan-95	Close to a high yielding domestic well
3W01 KT(TW06 KT(137 9 91 2	.5 Silty, gravelly Clay .5 Clay	Namurian Sandstones & Shales Namurian Sandstones & Shales		2.32	Feb-95 Feb-95	
TW06 KT									20	10000	
TW06 KT		TW05,									
	·	TW5, Borewell No.1			120	39 Brown Boulder Clay	Permo-Triassic Sst		0.8	May-95	Located 13 m from NERDO borehole C35/3c
W07 KT	TC 1998				99	2 Clay	Permo-Triassic Sst		-		
	TC 1998				121	10 Silty, gravelly Clay	Namurian Sandstones & Shales		17.5	Aug-95	Upper portion of hole intercepted gypsum beds (20 to 75m) with Namurian shale & SST
W08 KT	TC 1998		52.86		107	11 Red Clay	10-74m KC Gypsum Fmn / Namurian Sst & Shale		11.95	19/02/1996	below. Main inflow from grey black shales. TOC from KTC 2002 Table 2.
											Main inflow from black shales, may have masked inflow from underlying SST. Sst collapsing below 82m. TOC from KTC 2002
W09 KT	TC 1998	PW9	67.89		82 7	.5 Stoney CLAY	Namurian Sandstones & Shales		11.67	29/02/1996	Table 2.
											Inflow encountered in SST. Main inflow from cavern in the SST, possibley Dinantian Karst, Not possible to determine underlying rock type
		TW10,					Through Namurian Conditioned into				due to cavern infill. Cavern was an empty void mostly, no drilling needed. All inflows artesian. WELL PLUGGED TO STOP
3W03 KT		Borewell No.3			91 17	.5 Stoney Clay	Through Namurian Sandstones into Dinantian Limestones		Artesian		OVERFLOW in approx June 1996.
W11 KT	TC 1999		36.7		91.4 7	.6 Gravelly CLAY	Namurian Sandstones & shales		0.6mbtc	Jan-98	TOC from KTC 2002 Table 2.
W12 KT	TC 2000				135 8	Gravelly Clay to 4.6m over sandy silty 8.8 gravels (fining upwards) to 8.8m	Through Red Sst (Nam) into Limestone (DIN) below 122m		0.6mbtc	Jan-98	
											432m3/d yield est for gravel subsoil. 1540m3/d yield est for frac, weathered
3W02 KT		TW13, Borewell No.2			19.2 8	Gravelly Clay to 4.6m over sandy silty .8 gravels to 8.8m	Red Sandstone (Namurian)		0.02mbtc	Jan-98	bedrock immediately under gravels. Annulus cemented to 9.14m.
						Gravelly Clay (0 to 12.2m) / over	KC Gysum Fmn (Gypsum 21.3 to 30.5m) / mudstone/ NAM Sst&Shale (31.7 to				Annulus cemented to 31.7 m. High Fe & Mn.
W14 KT	TC 1999		39.55		91 21	.3 coarse Boulder Clay (12.2 to 21.3m)	62.5m)/Sst		7.06 mbtc	19/02/1999	High SO4. TOC from KTC 2002 Table 2. Originally intended to be an Observation well
											for TW14 (would have been OW03), drilled for 6 week Multi-well pump test. More secure
W14A KT	TC 2002		41.16		91.4 24	Red CLAY (0-3m)/Brown-red CLAY with Gravel (3-12)/Red CLAY (12-	PT into NAM. Interbeded Red & White sst to 54m/ shales interbeded with black mudst.		9.75	21/11/2001	location than TW14, therefore used TW14A as the Trial well and TW14 as the observation well. TOC from KTC 2002 Table 2.
	10 2002		41.10		51.4 24	Brown CLAY and sand (0-10m)/ Red Boulder CLAY (10-15)/ Red Gravelly			5.75	21/11/2001	
W15 KT	TC 2002		59.7		122 ;	CLAY (15-30)/coarse silty GRAVEL (30-34)/ coarse clayey GRAVEL (34- 38 38)	PT into NAM. Weatherd broken shale to 31.4m//Gypsum 45 to 82m/interbedded Sst & Shale to 122m		19.26	26/10/2001	TOC from KTC 2002 Table 2.
											TOC from KTC 2002 Table 2.
	TC 2002		70.77				NAM Interbedded Siltstone, Sst & Shale PT into NAM. Clayey SST over SST over		15.97	02/11/2001	Observation well for TW08, drilled for 6 week Multi-well pump test. TOC from KTC 2002
OW01 KT	TC 2002		54.93		69 :	34 (11-13)/ red-brown CLAY (13-34) Red BOULDER CLAY (0-18)/Brown	interbedded Shale and SST		13.8	09/11/2001	Table 2. Observation well for TW15, drilled for 6 week Multi-well pump test. TOC from KTC 2002
DW02 KT	TC 2002		53.69		61	24 BOULDER CLAY (18-24m)	PT into NAM. White Limestone		13.32	31/10/2011	Table 2. Observation well for TW16, drilled for 6 week
OW04 KT	TC 2002		73.68		52	20 Red CLAY	NAM. Interbedded SST and Shale		17.61	26/10/2001	Multi-well pump test. TOC from KTC 2002 Table 2.
							NAM into Milverton Group DIN Lst.				Cavities in SST at 18 to 20m, between SST & Lst @ 30 to 37m and in Lst at 49 to 51m. Observation well for TW09 (PW9), drilled for
OW05 KT	TC 2002		63.33		52	6 Limestone Boulder & CLAY	Interbedded Sandstone and Limestone. Cavities encountered in SST and Lst.		21.26		6 week Multi-well pump test. TOC from KTC 2002 Table 2.
OW06 KT0	TC 2002		44.54		52	13 Red BOULDER CLAY	NAM (into DIN Lst?). Limestone Bedrock		Artesian	24/01/2001	Observation well relevant to TW14, 15 & 16, drilled for 6 week Multi-well pump test. TOC from KTC 2002 Table 2.
1100 1111	10 2002		11.01		02				, a toolait	2.001/2001	Trial Well by NERDO in 1981. Hole collapsing
											/ running sand in SST overnight. (3 hr pump test at 1.5lps when hole TD = 73, lined to 70m & infilled to 60m with running sand). Revert
C35/3c 198	ERDO 981 TC 2002		40		104	Alluvium (~0 to 13); Boulder Clay (~13 48 to 48)	Triassic Marl/Triassic SST		0.4	24/03/1980	mud used between 82 & 104m, broken down with Na-hypoChlorite. Meath Hill GWS Pumping Well No.1
	10 2002										Meath Hill GWS Pumping Weil No. I
MHPW2 KT	TC 2002		34.12								Meath Hill GWS Pumping Well No.2. TOC from KTC 2002 Table 2.
											Meath Hill GWS abaondoned well. TOC from
	TC 2002		38.66	Porobolo	57.91			TOC 6" (6" SC & 4" Liner)	18.02	Single	KTC 2002 Table 2. Private Well located 280m from TW08.
	TC 2002 TC 2002			Borehole Dug	3			Top of 1m dia concrete ring	18.92 0.56	12/02/2003 House Single 12/02/2003 House	Emmet Carolan Private Well. Patrick
	TC 2002			Dug	4.267			Top of Concrete Cover TOC 6" (6" SC &	1.57	Single 12/02/2003 House Single	Private Well. Tommy Martin
DW04 KT	TC 2002			Borehole	>30.5			4" Liner)	0.46	11/02/2003 House	Private Well. Brenie Doogan (0429667160) Private Well located located at Cabra Castle.
											Not in use in 2002. 2005 report has note saying Cabra Castle Estate say no well at this location. 2 No. GSI 100m acc BHs in this area
	TC 2002 TC 2002				\models			TOC 6" (6" SC &		Single	(Sheppard Estate) Private Well. Mc Enniffe
DW07 KT	TC 2003			Borehole	32			4" Liner)	9.14	11/02/2003 House	Hickey (0429668154)
0W08 KT	TC 2002			Dug	3.7			Top of 1m dia concrete ring Top of Liner (6"	0.47	2 Houses & 11/02/2003 Cattle Shed Single	Private Well located 180m from TW09. Austin Quigley (0879631422)
0W09 KT0 3H02 PC	TC 2003 C Fieldwc	DW10		Borehole				SC & 4" Liner)	15.19	11/02/2003 House	Mary Georgan (042 9667156)
DW12 KT	TC 2003 TC 2003			Borehole	83.82			TOC 6" (6" SC & 4" Liner)	21.73	Single 11/02/2003 House	Sean Byrne (0429661256work) Tommy Connaughton (0429327969 work)
DW13 KT	TC 2003 TC 2003			-				Top of Wall			
	TC 2003			Dug	1.7			(Square well with steps)	0.7	12/02/2003	Cunningham
DW16 KT	TC 2003				\vdash			Top of 1m dia		1 House &	Braydon (Scotland)
	TC 2003			Dug	6.98			concrete ring	0.9	12/02/2003 Cattle Shed 1 House &	
DW18 KT	TC 2003			Borehole	\vdash			Timber covering well (1m dia		Farm	Peter McGahon
1	TC 2003 TC 2003			Dug	3.35			concrete ring)	1.79	12/02/2003 House	Ger McGahon McKeown Car(Face) MeEnteer
DW20 KT				Borehole	41.15			TOC 6" (6" SC)	0.85	12/02/2003 2 Houses	Ger/Frank McEnteer
DW20 KT0 DW21 KT0	TC 2003 TC 2003			Dug	4.7			Top of 1m dia concrete ring	1.76	1 House & 12/02/2003 Cattle	Ramsay

			Pumping Test No. 1>KTC 1995, 1996, 1998 & 1999									
				Pumping Test Rate				Estimated Safe Yield		P Test achieved Steady		
Name	Source	Other Names	P Test	(CDT)	SWL mbREF	SWL Date	Drawdown	(KTC, 1998)	T S m2/d		Pump Test Obs Wells	Pump Test Comments
TW01	KTC 1998			-			-	<10			OW No.1. 80m from TWNo2, exact	
TW02 TW03	KTC 1998 KTC 1998		72 hr test. Early Jan95 72 hr test. 07/03/95	1211 1119 - 523	2.03mbgl 2.32	Jan-95 07/03/1995	14.39 2.95 - 13.26	800	28 0.0004	No No	location not recorded Domestic Well. 30m from TW03, exact location not recorded	Ptest Q decreased from 1119 to 523m3/d "to accommodate a neighbouring well owner"
TW04	KTC 1998			-			-	200				
BW01		TW05, TW5, Borewell No.1	Step test (29/5/95) & 10 day Test (30/5 to 9/6/95)	635	0.8	29/05/1995	42.79	500	21 0.00017	No	OBS No.1 (i.e. NERDO C35/3c), located 13m from Twno.5, exact location no given.	
TW06	KTC 1998			-			-	<10			Obs No.1, Obs No.2 & Obs No.3	Test shortened due to interference with a nearby
TW07	KTC 1998		48 hr test. 23-25/08/95	731	17.5	23/08/1995	18.24	400		No	(locations not given)	domestic well
TW08	KTC 1998		72 Hr test. Barrier boundary encountered (19/2/96).	1027	11.95	19/02/1996	9.44	500		No	None	
			72 Hr test. Barrier boundary encountered. Pumping rate had to be cut back towarsd end									
TW09	KTC 1998	PW9	of test. (29/2/1996)	850	11.67	29/02/1996	23.63	400		No	None	
			30 Hr test (1134m3/d) (date not recorded, no									
Diviso		TW10,	drawdown from artesian); 24hr on 6/3/96 (2072m3/d, v cloudy discharge), artesian			00/00/4000	5.10	1000				
BW03		Borewell No.3	overflow = 1300m3/d.		Artesian	06/03/1996		>1300		Yes		4No. 100min steps at start = 550, 1060, 1546,
TW11	KTC 1999		71hr test (2-5/2/98)	1824	0mbgl	02/02/1998	30.49	1200		Yes	None	1922m3/d
TW12	KTC 2000				Artesian	Feb-98						(No. 100min stans at start _ 520, 1021, 1500
		TW13,										4No. 100min steps at start = 532, 1031, 1593, 2239m3/d. Final rate cut back to 1557m3/d after 440mins. Level recovered after 440min then dropping
BW02	KTC 2001	Borewell No.2	70 hr test (Feb 98)	1557	0.02mbgl	Feb-98	11.37	800		No	TW12 (5m from TWNo.13)	again by end test. Rate of ddn increases after 9m 3 No. 100 min steps at start = 767.6 (s = 1.1m), 1504.8 (s= 3.2m) & 2688 m3/d> dropped to
TW14	KTC 1999		72 hr test (Feb 1999)	2462	7.06 mbtc	19/02/1999	17.88	1200		No	TW Nos. 9, 10 & 11> no impact from pumping TW14.	2462m3/d as pumping head increased (s=17.88). Drawdown still 14.47 m after 60 min recovery
TW14A	KTC 2002											
TW15	KTC 2002											
TW16	KTC 2002											
OW01	KTC 2002											
OW02	KTC 2002											
OW04	KTC 2002											
OW05	KTC 2002											
OW06	KTC 2002											
												qs = 33.5m3/d/m High Fe & pH. No Observation Well
	NERDO											Note: Used as an observation Well for TW05 on 30/05/1995> RWL on 30/05/1995 = 1.6mbgl (this may not have been fully recovered after TW05 step
C35/3c MHPW1	1981 KTC 2002		NERDO 72hr test on 25/03/1980 @ 10.6lps	915.84	0.4	24/03/1980	40		48	No		test on 29/05/95)
MHPW2	KTC 2002											
MHOW	KTC 2002											
DW01	KTC 2002											
DW02 DW03	KTC 2002 KTC 2002											
DW04	KTC 2002											
DW05 DW06	KTC 2002 KTC 2002											
DW07	KTC 2003											
DW08	KTC 2002											
DW09 BH02	KTC 2003 PC Fieldwo	DW10										
DW11 DW12	KTC 2003 KTC 2003											
DW13 DW14	KTC 2003 KTC 2003									-		
DW15	KTC 2003											
DW16	KTC 2003											
DW17 DW18	KTC 2003 KTC 2003		<u> </u>									
DW19 DW20 DW21	KTC 2003 KTC 2003 KTC 2003											
DW22 DW23	KTC 2003 KTC 2003											
DW24	KTC 2003 KTC 2003											

			Pumping Test> 6 week Multi Well Ptest on TW08, 09, 11, 14A,15 & 16, App of KTC 2002									
Name	Source	Other Names			SWL @ Start Test (assume 12/03/02)		Recovery after 22 days	Estimated Safe Yield (KTC, 1998)	т	P Test achieved Steady State?	Pump Test Obs Wells	Pump Test Comments
TW01	KTC 1998			m3/day	mbRef	m	m	m3/day	m2/d			
	KTC 1998											
TW03 H TW04	KTC 1998 KTC 1998				4.91 15.69	0.03						
		TW05, TW5,										
	KTC 1998	Borewell No.1			0.92							
	KTC 1998 KTC 1998				2.9							
TW08	KTC 1998		Test Start Date = 14/03/2002	410-561	11.36	14.88	7.9			No	OW01	
TW09	KTC 1998	PW9	Test Start Date = 13/03/2002	288-489	16.78	18.03	13.4			No	OW05	TW09 called PW5 in this test
BW03 H		TW10, Borewell No.3				inaccessible						
	KTC 1999			789-1137	Artesian		21.55 (artesian after 4 hrs)			 Yes	None	
TW12	KTC 2000				0.47	0.01						
BW02	KTC 2001	TW13, Borewell No.2			artesian							
TW14	KTC 1999				7.14	15.54						
TW14A	KTC 2002			1907- 2090	9.36	17.88	14.58			No		Note: 24hr Ptest carried out on TW14A on 13/11/02, App of KTC 2002
	KTC 2002		Test Start Date = 13/03/2002	2090	9.30	17.00	14.56			140		
TW15	KTC 2002			1015- 1431	18.18	13.84	6.98			No		Note: 24hr Ptest carried out on TW15 on 7/11/02, App of KTC 2002
	KTC 2002			573-627	15.8		16.54					Note: 24hr Ptest carried out on TW16 on 9/11/02, App of KTC 2002
			Test Start Date = 14/05/2002	573-627			16.54			110	0004	2002
OW01 I	KTC 2002				13.14	4.85						
OW02	KTC 2002				12.05	9.01						
OW04	KTC 2002				18.49	12.04						
OW05	KTC 2002				20.84	-0.85						
OW06	KTC 2002				Artesian	artesian throughout						
	NERDO											
C35/3c MHPW1	1981 KTC 2002						None. WL					
MHPW2	KTC 2002			1027 - 1047	3.52		continues to drop (by 0.18m)					
	110 2002			1047	0.02	Overflow stopped	0.1011					
						after 4 weeks; subsequent						
MHOW	KTC 2002				Artesian	dddn = 0.15m						
	KTC 2002				18.9							
	KTC 2002 KTC 2002				0.6							
DW04	KTC 2002			-	Artesian	artesian						
DW05 H DW06 H	KTC 2002 KTC 2002				29.75 1.19							
DW07	KTC 2003											
DW08	KTC 2002				2.63	est. 0.4 to 0.5						
DW09 H BH02 I	KTC 2003 PC Fieldwo	DW10										
DW12	KTC 2003 KTC 2003											
DW13 I	KTC 2003 KTC 2003											
DW15	KTC 2003											
DW16												
• •	KTC 2003					1			1	1		1
	KTC 2003											
DW18	KTC 2003 KTC 2003											
DW18 DW19 DW20	KTC 2003											
DW18 DW19 DW20 DW21 DW22	KTC 2003 KTC 2003 KTC 2003 KTC 2003											

			Pumping Test> 6										
			week Multi Well Ptest on TW10, TW13, TW05 (TW05=PW5 in KTC 2003 report), KTC 2003										
				Pumping Test Rate				Estimated Safe Yield (KTC,			P Test achieved Steady	Pump Test Obs	
Name	Source	Other Names	P Test	(CDT) m3/day	SWL (24/02/2003) mbREF			1998)	T m2/d	S	State?		Pump Test Comments
TW01 TW02	KTC 1998 KTC 1998				no data no data								
TW03 TW04	KTC 1998 KTC 1998				no data no data								
11104	1110 1330		I		no data								Nearest private wells: 100m north (DW21), DW20(further Nth) & DW22-25 (south). All monitored in detail except 20.
BW01		TW05, TW5, Borewell No.1	Test Start Date = 24/02/2003 End Date = 7/04/2003	Initial rate 980. Then 727 - 749	0.35	c.40					Yes		Initial rate out back due to excessive drawdown (nearing pump depth). NERDO C35/3c located 5m away (said 13m in 1995 test)
TW06	KTC 1998				no data								
TW07	KTC 1998				13.7	0.12							
TW08	KTC 1998				10.89	-0.05							
TW09	KTC 1998	PW9			17.99								Called PW5 in KTC 2003
			Test Start Date =	Initial artesian = 1600, then dropped to 735 in wk 1 and then increased to 800. Pumping wk 3-4 at 900-			Artesian after 30 secs; overflow 600m3/d in 10 hrs; 750m3/d						Nearest private well 100m away, artesian, 32m deep -> probably DW4. TW10 sealed with an inflatable packer in June 1996. Not possible to remove Packer> well diameter reduced to 100mm. Artesian flow
BW03		TW10, Borewell No.3	24/02/2003 End Date = 7/04/2003	920; wk 5-6 at 1200- 1260	Artesian		after 3 days and after				Yes		monitored for wks 1&2 of test, then suction pump used wks 2-6.
TW11	KTC 1999				Artesian	0.59					Yes		
TW12	KTC 2000				1.66		2m from SWL after 2 hrs. Full rec by 9 days						Used as Obs Well for TW13
BW02		TW13, Parawall No 2	Test Start Date = 24/02/2003 End Date = 8/04/2003	Initial rate >1200, dropped to avg of 800- 900	0.17		2m from SWL after 6 hrs. Full rec by 9 days						TW12 used as Obs Well, 5m from TW13.
DW02	10 2001	Dorewen 140.2	Lind Date = 0/04/2003	300	0.17	11 10 12	Tec by 5 days						TW12 used as Obs Weil, Sin Holin TW13.
TW14	KTC 1999					0.12							
TW14A	KTC 2002					0.03							
TW15	KTC 2002					0.25							
TW16	KTC 2002					0.09							
OW01	KTC 2002				13.03	0.03							
OW02	KTC 2002				11.7	0.06							
OW04	KTC 2002				>20								
OW05	KTC 2002				20.75	0.7							
OW06	KTC 2002				Artesian	Artesian							
	NERDO												Observation well for TW05. RWL on 24/02/2003
C35/3c MHPW1	1981 KTC 2002				0.75	20 - 20.3 Artesian							= 0.75 mbRef (assume = mbgl)
MHPW2	KTC 2002				Artesian	Artesian							
MHOW DW01	KTC 2002 KTC 2002				18.9	0.77							Remote from pumping wells
DW02	KTC 2002				1.2	0.41							Remote from pumping wells
DW03 DW04	KTC 2002 KTC 2002				1.91 Artesian								Relevant to TW10 (& poss TW13) Relevant to TW10 (& poss TW13)
DW05 DW06	KTC 2002 KTC 2002				1.34	0.09							
DW07	KTC 2003				9.25								Relevant to TW13 & TW10
DW08	KTC 2002				0.26	0.05							Relevant to TW13 & TW10
DW09 BH02	KTC 2003 PC Fieldwo	DW10			15 no data								Relevant to TW13 & TW10
DW11 DW12 DW13	KTC 2003 KTC 2003 KTC 2003				21.55 1.77 no data	0							Relevant to TW13 & TW10 Relevant to TW13 & TW10
DW14	KTC 2003				no data								Delevent & TV//2
DW15 DW16	KTC 2003 KTC 2003				0.78								Relevant to TW13 Relevant to TW13 & TW10
DW17 DW18	KTC 2003				1.83 no data								Relevant to TW13 & TW10
DW18 DW19	KTC 2003				no data 1.62								Relevant to TW13
DW19 DW20 DW21	KTC 2003 KTC 2003				no data 0.95								Relevant to TW05
DW22 DW23 DW24	KTC 2003 KTC 2003				1.95 1.87	0.17							Relevant to TW05 Relevant to TW05
DW24 DW25	KTC 2003 KTC 2003				no data 1.71								Relevant to TW05

Name	Top of Casing	SWL	SWL Date	Source	SWL	SWL Date	Source	SWL		SWL Date	Source	SWL		SWL Date	Source
Indille	Gasing	SWL	SWL Dale	Source	SVVL	SVVL Dale	Source	SWL		SWL Dale	Source	SWL		SVVL Dale	Source
									mbgl (WYG						
	mAOD		Assumed					mbRef (WYG 2002	2002 Pump test ddn						
	Poolbeg	mbgl	from BH log		mbgl			Table 2)	data)			mbRef	mbgl		
TW01	inaccessible (2	2.5		KTC 1998											
TW02	inaccessible (2	2.03	Dec-94	KTC 1998											
TW03 TW04		2.32	Feb-95	KTC 1998 KTC 1998				4.91		13/03/2002 13/03/2002					
BW01		0.8		KTC 1998 KTC 1998				0.92		13/03/2002			0.35	24/02/2003	3 WYG 2003
TW06		-		KTC 1998				2.9		13/03/2002					
TW07		17.5	Aug-95	KTC 1998				13.66		13/03/2002		13.7		23/02/2003	8 WYG 2003
											SWL for 6 week Multi Well Ptest on TW08, 09, 11,				
											14A,15 & 16, App of WYG				
TW08	52.86	11.95	19/02/1996	KTC 1998				11.36	10.86	14/03/02 @ 10	2002	10.89		23/02/2003	WYG 2003
											SWL for 6 week Multi Well Ptest on TW08, 09, 11,				WYG 2003 (Called
											14A,15 & 16, App of WYG				PW5 in
TW09	67.89	11.67	26/02/1996					16.78	16.28	13/03/2002 @	2002	17.99			WYG 2003)
BW03		Artesian		KTC 1998									Artesian	24/02/2003	3 WYG 2003
											SWL for 6 week Multi Well Ptest on TW08, 09, 11,				
											14A,15 & 16, App of WYG				
TW11	36.7	0.6mbtc		KTC 1999				Artesian	-0.5	13/03/2002 @	2002	Artesian			WYG 2003
TW12		0.6mbtc	Jan-98	KTC 2000				0.47		13/03/2002		1.66			3 WYG 2003
BW02 TW14	39.55	0.02mbtc	Jan-98 19/02/1999	KTC 2001				Artesian 7.14		13/03/2002		7.59	0.17	24/02/2003	3 WYG 2003 3 WYG 2003
1 1 1 1 4	39.55	7.06 mbtc	19/02/1999	KIC 1999				7.14		13/03/2002	SWI for 6 week Multi Well	7.55		23/02/2003	W 1G 2003
							SWL for 24hr Ptest				Ptest on TW08, 09, 11,	1			
							on TW14A, App of				14A,15 & 16, App of WYG				
TW14A	41.16	9.75	21/11/2001	WYG 2002	9.05	13/11/2001	WYG 2002	9.36	8.86	13/03/2002 @		9.17		23/02/2003	8 WYG 2003
							SWL for 24hr Ptest				SWL for 6 week Multi Well Ptest on TW08, 09, 11,				
							on TW15, App of				14A,15 & 16, App of WYG				
TW15	59.7	19.26	26/10/2001	WYG 2002	17.95	07/11/2001	WYG 2002	18.18	17.68	14/03/02 @ 10	2002	17.68		23/02/2003	WYG 2003
											SWL for 6 week Multi Well				
							SWL for 24hr Ptest on TW16, App of				Ptest on TW08, 09, 11, 14A,15 & 16, App of WYG				
TW16	70.77	15.97	02/11/2001	WYG 2002	14.93	09/11/2001	WYG 2002	15.8	15.3	14/03/02 @ 10		16.81		23/02/2003	WYG 2003
OW01	54.93	13.8	09/11/2001	WYG 2002				13.14		13/03/2002		13.03		23/02/2003	3 WYG 2003
OW02	53.69	13.32	31/10/2011	WYG 2002				12.05		13/03/2002		11.7		23/02/2003	8 WYG 2003
OW04 OW05	73.68	17.61 21.26	26/10/2001 25/10/2001					18.49 20.84		13/03/2002 13/03/2002		>20 20.75		23/02/2003	3 WYG 2003 3 WYG 2003
OW05 OW06		Artesian	24/01/2001	WYG 2002				Artesian		13/03/2002		Artesian		23/02/2003	3 WYG 2003
															WYG 2003
				NEBDO											(Called TW5 in
C35/3c		0.4	24/03/1980									0.75		24/02/2003	WYG 2003)
												0.38			
MHPW1				WYG 2003								(Artesian)		23/02/2003	3 WYG 2003
											SWL for 6 week Multi Well Ptest on TW08, 09, 11,				
											14A,15 & 16, App of WYG				
MHPW2	34.12			WYG 2003					3.52	13/03/2002	2002	Artesian		23/02/2003	WYG 2003
											SWL for 6 week Multi Well Ptest on TW08, 09, 11,				
											14A,15 & 16, App of WYG				
MHOW	38.66			WYG 2003			L		Artesian (60	13/03/2002	2002	4.38			WYG 2003
DW01		18.92	12/02/2003	WYG 2003				18.9		13/03/2002		18.9		23/02/2003	8 WYG 2003
DW02 DW03		0.56	12/02/2003	WYG 2003 WYG 2003	I			0.6		13/03/2002 13/03/2002		1.2		23/02/2003	8 WYG 2003 8 WYG 2003
DW03 DW04		0.46	12/02/2003	WYG 2003	1			1.3 Artesian		13/03/2002		Artesian			3 WYG 2003 3 WYG 2003
DW05				WYG 2003				29.75		13/03/2002					
DW06				WYG 2003				1.19		13/03/2002		1.34		23/02/2003	8 WYG 2003
DW07 DW08		9.14 0.47	11/02/2003 11/02/2003	WYG 2003	l			2.63		13/03/2002		9.25		23/02/2003	8 WYG 2003 8 WYG 2003
DW08 DW09	-	0.47	11/02/2003		1			2.63		13/03/2002		0.26		23/02/2003	3 WYG 2003 3 WYG 2003
DW10				WYG 2003											
DW11		21.73	11/02/2003	WYG 2003								21.55		23/02/2003	8 WYG 2003
DW12 DW13				WYG 2003 WYG 2003								1.77		23/02/2003	3 WYG 2003
DW13 DW14			t	WYG 2003				1				1			+
DW15		0.7	12/02/2003	WYG 2003								0.78		23/02/2003	3 WYG 2003
DW16				WYG 2003								1.63		23/02/2003	3 WYG 2003
DW17		0.9		WYG 2003	l							1.83		23/02/2003	3 WYG 2003
				WYG 2003	l		1					1.62		23/02/2003	3 WYG 2003
DW18		1 79	12/02/2003												
DW18 DW19 DW20		1.79	12/02/2003	WYG 2003											
DW18 DW19 DW20 DW21		0.85	12/02/2003	WYG 2003 WYG 2003								0.95		23/02/2003	3 WYG 2003
DW18 DW19 DW20 DW21 DW22				WYG 2003 WYG 2003								1.95		23/02/2003 23/02/2003	8 WYG 2003
DW18 DW19 DW20 DW21		0.85	12/02/2003	WYG 2003 WYG 2003										23/02/2003 23/02/2003	

1

	Water Level				
Name	Datum	Water Level	Water Level	Water Level	Water Level
		(mb datum)	(mb datum)	(mb datum)	(mb datum)
		01/11/2001	01/03/2002	08/03/2002	11/03/2002
DW01	TOC		18.92	18.89	18.81
DW02	KERBSTONE		0.51	1	1.02
DW03	G.L		0.92	1.32	1.15
DW04	TOC		0	0	0
DW05	TOC	30.56	29.72	29.72	29.68
DW06	COVERING		1.11	1.21	1.21
OW01	TOC	13.8	13.15	13.15	13.04
OW02	TOC	13.31	12.13	12.02	11.93
OW04	TOC	18.3	18.45	18.33	18.27
OW05	TOC	21.73	20.21	21.05	20.92
OW06	TOC	0	0	0	0
TW03	TOR		8.92	8.95	4.79
TW03	TOC	5.07	4.87	4.87	8.9
TW04	TOC	16.01	15.85	15.63	15.6
BW01 (TW05)	TOC	1.54	0.8	0.95	0.89
TW06	TOC	2.94	2.91	2.9	2.91
TW09	TOC	15.14	16.48	16.45	16.47
TW11	TOC	0	0	0	0
TW12	TOC	0.53	0.47	0.48	0.49
BW02 (TW13)	TOC	0	0	0	0
TW14	TOC	9.75	7.33	7.36	7.3
TW15	TOC	18.39	18.24	18.15	18.07
TW16	TOR		15.86	15.77	15.85

MEA	TH HILL WELL		
PUMPING WELL	1.11	TOC	METER READING 176863.1
MONITORING WELL	0	TOC	PUMPING @ 7800 GPH
BACK-UP WELL	0	TOC	

Table A1.1d Kingscourt Trial Wells and Observation Wells Data From PC Field Work, WYG 2003 and Gypsum Limited (Minerex) 2003 and 2010

Source Minerex		Other Names	280706	298613	Total Depth	DTB	Aquifer Kcgyp	Aquifer Comments	Geol_Member Kcgyp UpMst
Minerex			280706	298613			Ксдур Ксдур		Kcgyp_Opivist Kcgyp_MainDol
Minerex			280817	298713			Ксдур		Kcgyp_MidMud
Minerex Minerex			281033 281033	298913 298913			Kcgyp Overburden		Kcgyp_MidMst Overburden
	DrGsat_DWbh		280642	299611			Ксдур		Kcgyp_ugMine
Minerex Minerex	-		280616 280573	299159 299540			NamSstSH Overburden		NamSstSH Overburden
Minerex	M103P		281176	298869)		Ксдур		Kcgyp_UpMst
	MW-1-P1 MW-1-P2		280707 280707	299029			Ксдур Ксдур		Kcgyp_MainDol Kcgyp UpGyp
	MW-1-P2 MW-1-P3		280707	299023			Kcgyp		Kcgyp_UpMst
	MW-2-P1 MW-3-P1		280708 280713	299029			Overburden WestPh		
	MW-3-P1 MW-3-P2		280713	299029			Kcgyp		WestP/NamSstSH Kcgyp MidMst
	MW-4-P1		281077	298938			Ксдур		Kcgyp_LowDol
	MW-4-P2 O3A-P -1		281077 280542	298938 297922			Kcgyp NamSstSH		Kcgyp_MainDol NamSstSH
Minerex	O3A-P -2		280542	297922			Ксдур		Kcgyp_UpMst
PC PC	BH01 BH03	Downtroe Doultry Form	281562 279578	297889 299528		01.000	NamSstSH PT Sst	No data. Assume NamSstSH	NamSstSH PT Sst
	BH03 BH04	Rowntree Poultry Farm Private BH	279578	299528		21.330	PT Sst	Subsoil = "Shingles & Sandstone"	PT Sst
								Brown gravelly clay (traces of wood at base) /Soft SST (500gph) to72'/ medium hard SST water strike at 130' 1000gph in broken rock. SC 0.12.2m @ 8", 0 to 26.6 @ 6";	
		St James Court BH Private BH	280150 280389	297526 297955			PT Sst PT Sst	PVC liner to TD, 120' solid, 80' screen. Red Marl to total depth	PT Sst PT Sst
PC	BH07	Machinery Manufacturer Ballycartley	280208	298813	3		PT Sst		PT Sst
PC	BH08	GSI No. 2629SEW131	282231	297815			NamSstSH		NamSstSH
PC	BH09 BH10	Private BH Limestone Industries Quarry Main Well	284321 284064	297657 299436		n	DINLst DINLst	1	DINLst DINLst
PC	BH11	Barley Hill Quarry (Well by Gates)	283534	295606	6		DINLst		DINLst
PC PC	BH12 BH13	Private BH Private BH	282957 282958	295568 296562			DINLst DINLst		DINLst DINLst
PC	BH14	Private BH Private BH	282958	296562			PT Sst		PT Sst
PC	GW01	Tobarmananan Spring	282565	296599)		DINLst/OB		DINLst
WYG	BH02	aka DW10	281731	297431			NamSstSH	Drilled ~2005, TD ~ 30.5m, NW of DW09, assume NamSstSh	NamSstSH
WYG	BW01	aka TW05 & PW5;GSI2629503	280006	297801			PT Sst		PT Sst
WYG	BW 02	aka TW13,GSI 2629SEW507	282522	296938	3		NamSstSH	Shallow Sst, main inflow 8.8to12mbgl Drilled thru NamSstSh; OH thru NamSstSH;Main Inflow in	NamSstSH
WYG	BW 03	aka TW10; GSI 2629SEW145	282281	296881			NamSstSH/DINLst	Cavern at base (assume karst Lst, but log show Sst in last	NamSstSH/DINLst
WYG	DW01		280302	295472			NamSstSH	NamSstSH at ~34m	Kcgyp/NamSstSH
	DW02		280442	295280			Overburden	Dug Well	Overburden
WYG	DW 03		282664	296576			Overburden	Dug Well TD > 30.5m, nearest log BW03 in NamSstSH at 30m, nearby	Overburden
WYG	DW04		282405	296834				TW12 in DINLst at 21m	NamSstSH/DINLst
WYG	DW06		281740	294418			NamSstSH	Beside TW07, Drilled but no TD data. Drilled, TD = 32m. In NamSstSH NW of BW03/TW12.	NamSstSH
WYG	DW07		282087	297002			NamSstSH	TW12 in NamSstShLst until 122m	NamSstSH
WYG WYG	DW08 DW09		281806 281760	297233 297256			Overburden NamSstSH	Dug Well Drilled, TD = ?. NW of DW07, assume NamSstSH	Overburden NamSstSH
WYG	DW11		281650	297388			NamSstSH	Drilled, TD = 84m. NW of DW07, assume NamStSh NamSstSH GSI data indicate TD = 52.7, DTB = 21.3m. Yield 327m3/d,	NamSstSH
WYG	DW12	aka GSI 2629SEW 178	281708	297598			NamSstSH	Water Strike @ 45.7m. Assume NamSstSH	NamSstSH
	DW 13 DW 14		281635 281602	297643 297691			NamSstSH NamSstSH	No data. Assume NamSstSH No data. Assume NamSstSH	NamSstSH
WIG	DVV 14		281602	29/091			Namosion	Dug Well. House also has a borehole (=	NamSstSH
WYG	DW 15	aka GSI 2629SEW 131	282199	297811			Overburden	GSI2629SEW131;BH08) but no access	Overburden
	DW16 DW17		282649 282901	296963 296834			DINLst Overburden	No data. Assume DINLst Dug Well	DINLst Overburden
Wid			202301	230034			Overbuiden	GSI data indicate TD = 28, DTB = 20m. Yield = 21.8m.	Overbarden
WYG	DW18	aka GSI 2629SEW 109;NERDO 34/5b	282758	297289			DINLst	Assume DINLst	DINLst
WYG WYG	DW 19 DW 20		282737 280117	297576 298051			Overburden PT Sst	Dug Well No data. Assume PT Sst	Overburden PT Sst
								Drilled, TD = 41m. North of BW01 where DTB = 38m.	
WYG WYG	DW21 DW22		280044 279802	<u>297952</u> 297283			PT Sst Overburden	Assume PT Sst Dug Well	PT Sst Overburden
WYG	DW23		279848	297218	3		Overburden	Dug Well	Overburden
WYG	DW24		279871	297107			PT Sst	No data. Assume PT Sst	PT Sst
WYG WYG	DW25 MHPW2	aka GSI 2629SEW 053	279964 285214	297370 294203			PT Sst DINLst	No data. Assume PT Sst Artesian Limestone group water supply BH	PT Sst DINLst
						1		as TW08, thru Kcgyp to Nam, gyp 5-10m, cased 0-37 into	
WYG	OW01		280411	295625			NamSstSH	NamSst as TW15, thru Kcgyp to Nam, no gyp enc, cased to top of	NamSstSH
WYG	OW02		280810	296233			NamSstSH	rock @24m, Nam below (white Lst)	NamSstSH
WYG	OW04		281712	296497			NamSstSH	as TW16 bet TW9 (Nam) & DinLst on Ardagh shale (Nam), several	NamSstSH
WYG	OW05		282269	296342			NamSstSH/DINLst	cavities in Sst & Lst beds	NamSstSH/DINLst
WYG	OW06		281324	296115	5		NamSstSH		NamSst
WYG WYG	TW01 TW02	aka GSI 2629SEW 502 aka GSI 2629SEW 066	279152 280853	294568 293118			PT Sst NamSstSH	1	PT Sst NamSstSH
WYG	TW03	aka GSI 2629SEW 067	281078	293825	5		NamSstSH		NamSstSH
WYG WYG		aka GSI 2629SEW 068 aka GSI 2629SEW 504	281217	292498			NamSstSH		NamSstSH PT Sst
W YG W YG	TW06 TW07	aka GSI 2629SEW 504 aka GSI 2629SEW 069	279600 281689	<u>295810</u> 294534			PT Sst NamSstSH	1	NamSstSH
								Drilled thru Kcgyp; OH thru Kcgyp & Nam but water strike in	
WYG WYG	TW08 TW09	aka GSI2629SEW065 aka PW9; GSI2629SEW064	280528 282142	295768 296414			NamSstSH NamSstSH	Nam	NamSstSH NamSstSH
WYG	TW11	aka GSI 2629SEW 505	282272	296590			NamSstSH		NamSstSH
								Drilled thru NamSstSH into DINLst; High inlfow thru shallow sst (8.8to21m), OH 17to 135m, lower inflow Lst below 122m;	
WYG	TW12	aka GSI 2629506	282528	296941			NamSstSH	Hole collapsing in upper Sst => WL maybe only Upper Nam Sst by 2003 (drilled 1998) if collapse sealed off underlying Lst	NamSstSH
								Drilled thu KCgypFmn (Gypsum layer	
WYG	TW14	aka GSI2629SEW508	280947	296480)		NamSstSH	21.3to30.5m/mudstone30.5to38.1m) into NamSstSH, OH 37.8 to TD, Inflows in NamSstSH only (via cavities)	NamSstSH
								Drilled thru Kcgyp (gyosum 56-61m), casing grouted to 63m;	
WYG	TW14A		280915	296565	5		NamSstSH	Inflows in NamSstSH below 65m	NamSstSH
								Drilled thru Kcgyp (gypsum 45-82m), casing grouted to 45m,	
							-	,,,	
WYG WYG	TW15 TW16		280790 281631	296103 296499			NamSstSH NamSstSH	hole dry until inflow from Nam at base of gypsum at 82m	Kcgyp/NamSstSH NamSstSH

1

									1			1					
GSINAME	ORIGNAME	SRCNAME	ТҮРЕ	ДЕРТН М ДРТН	RCK M DTRCONFID	DRILLDATE	EASTING N	ORTHING	LOC ACC		TOWN	COUNTY	SIXINSHTNO	SOURCEUSE	YLDCLASS	PRODCLASS	YIELD M3D ABSTR M3D OVRFLW M3D
2629SEW028			Borehole	40	18.3 Bedrock Met	00:00:00			to 50m	DRUMGILL		Meath		Industrial use	Excellent		7200
2629SEW064 2629SEW109	1W9	KINGSCOURT WATER SUPPLY	Borehole Borehole	82	7.3 Bedrock Met 24 Bedrock Met	08/02/1996	282350 282760	296320 297290		BARLEYHILL DESCART		Meath	34	Public supply (Co Co)		II	850 25.9
2629SEW109 2629SEW110			Unknown	29	24 Bedrock Met	00:00:00 00:00	282760	297290		DESCART		Monaghan Monaghan	32		Poor Poor		17.3
2629SEW110			Unknown			00:00:00	280920		to 20m	ENAGH		Monaghan	34		Poor		25.9
2629SEW113			Borehole	55	DTB Unknown	00:00:00	283340		to 20m	KILLYGALLY		Monaghan	34	L	Poor		8.6
2629SEW114			Borehole	60	DTB Unknown	00:00:00	283500	299510	to 20m	KILLYGALLY		Monaghan	34		Poor		17.3
2629SEW118			Borehole	34	DTB Unknown	00:00:00	283030	297820	to 20m	RAHANS		Monaghan	34		Poor		25.9
26208EW/121			Parabala	01.0	DTB Unknown	00:00:00	282200	297810	to 20m	DERRYNAGLAH		Managhan	34		Madarata		43.6
2629SEW131			Borehole	21.3	DIBONKNOWN	00:00:00	282200	297810	10 2011	DERRYNAGLAH		Monaghan	32		Moderate		43.0
2629SEW134			Borehole	28	20 Bedrock Met	00:00:00	282770	297240	to 20m	DESCART		Monaghan	34	L	Poor		21.8
2629SEW135			Borehole	34	27 Bedrock Met	00:00:00	283020	297830	to 20m	RAHANS		Monaghan	34	L	Poor		32.7
00000514445	TN/ 40	CAVAN COUNTY COUNCIL-				05/00/4000	000070	000070		DECOMPT							0070
2629SEW145	IW 10	Kingscourt RWSS	Borehole	91.4	18.3 Bedrock Met	05/02/1996	282270	296870	to 10m	DESCART		Monaghan	34	Public supply (Co Co)	Excellent	1	2072
2629SEW146			Borehole	61	DTB Unknown	00:00:00	280910	298490	to 20m	ENAGH		Monaghan	34	L .			
		John Jackson's thesis/NERDO															
2629SEW151		report	Borehole	├ ─── ├ ───	4 Bedrock Met	00:00:00	281030	297680		ENAGH	+	Monaghan		Other			
2629SEW152 2629SEW153		GSI GSI	Borehole Borehole	<u> </u>	1 Bedrock Met 15.8 Bedrock Met	00:00:00 00:00	280540 281430	298010	to 10m to 10m	DRUMMOND DERRYLEEG	+	Monaghan Monaghan		Other Other			
2629SEW153 2629SEW154		GSI	Borehole		10.9 Bedrock Met	00:00:00	281430		to 10m	DRUMMOND		Monaghan		Other			
2629SEW154	T 12	GSI	Borehole		6 Bedrock Met	00:00:00	280420	298600		DRUMMOND		Monaghan		Other			
2629SEW156		GSI	Borehole		18.8 Bedrock Met	00:00:00	280470		to 10m	DRUMMOND		Monaghan		Other			
2629SEW157		GSI	Borehole	93	16.7 Bedrock Met	00:00:00	280910	298540		DRUMMOND		Monaghan		Other			
2629SEW158	Т9	GSI	Borehole		10.6 Bedrock Met	00:00:00	281140	299050	to 20m	DERRYNAGLAH		Monaghan	34	Other			
00000514450	T 10							000400									
2629SEW159 2629SEW160		GSI GSI	Borehole Borehole		7.3 Bedrock Met 3 Bedrock Met	00:00:00 00:00	280900 280620	299130	to 20m to 10m	DRUMMOND DRUMMOND		Monaghan Monaghan		Other Other			
20293200100	1 19	031	DOLELIDIE		5 Bedrock Met	00.00.00	200020	299210				wonagnan		Other			
2629SEW161	OD	GSI	Borehole		12.8 Bedrock Met	00:00:00	281070	299370	to 20m	DRUMMOND		Monaghan	34	Other			
2629SEW162	OZ	GSI	Borehole		11.9 Bedrock Met	00:00:00	280890	299500	to 20m	DRUMMOND		Monaghan	34	Other			
2629SEW163	31	GSI	Borehole		9.4 Bedrock Met	00:00:00	280710	299490	to 20m	DRUMMOND		Monaghan	34	Other			
2629SEW164	Т 37	GSI	Borehole		6 Bedrock Met	00:00:00	280350	299630	to 20m	DRUMMOND		Monaghan	3/	Other			
2629SEW164		GSI	Borehole		3.5 Bedrock Met	00:00:00	281360		to 10m	DERRYNASCOBE		Monaghan		Other			
2629SEW167		Monaghan GWPS	Borehole	6	6 Bedrock Presumed	27/06/2001	280050		to 10m	BALLYCARTLAN		Monaghan		Other			
		Monaghan GWPS	Borehole	10.5	Bedrock Not Met	27/06/2001	279600	299540	to 10m	LISNAKEENY		Monaghan		Other			
2629SEW171	EPA no. 80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Borehole			00:00:00	283100	299700	to 50m	LEONS BEG		Monaghan	34	Industrial use	Poor		7
2629SEW172	2638		Borehole	121.9	DTB Unknown	12/02/2002	279550	299510	to 50m	LISNAKEENY		Monaghan	33	Agri & domestic use	Excellent		872
2629SEW177			Borehole	58.8	12.2 Bedrock Met	15/10/2003	281440	207000	to 50m	ENAGH		Monaghan		Agri & domestic use	Moderate	N	87.3
2629SEW177 2629SEW178			Borehole	58.8	21.3 Bedrock Met	21/11/2003			to 50m	DERRYLEEG	1	Monaghan		Domestic use only	Good	I V	327
			20101010	02.1		21/11/2003	201720	201020	0.0000		1	monagnan	3-			ł	
2629SEW503	TW 5	Kingscourt Regional Water Supply	Borehole	120	39 Bedrock Met	01/05/1995	280100	298080	to 100m	MULLANTRA		Cavan	35	Public supply (Co Co)	Excellent	111	635
2629SEW504	TW 6	Kingscourt Regional Water Supply	Borehole	99	2 Bedrock Met	00:00:00	279600	295810	to 100m	CORGARRY		Cavan	35	Public supply (Co Co)	Failure	<u> </u>	10
	T\A/ 4 4		Derah			10/00/1000	000070	000110	to 100		Olbh - D 11	0.01			Eve-II-		0000
2629SEW508 2629SEW511	IVV 14	Kingscourt Regional Water Supply	Borehole Dug well	91.4 2.6	21.3 Bedrock Met DTB Unknown	19/02/1999 00:00:00	280970 279800		to 100m to 100m	CORMEY CORGARRY	Gibber Bridge	Cavan Cavan		Public supply (Co Co) Agri & domestic use	⊨xceilent	1	2688
20233574311			Dug well	2.0	טואווט פו ע	00.00:00	219000	290200		JUNUANNI	1	Javan	35	ngin a donnestic use			
2629SEW514	ILC 1236	Land Commission, Sheppard Estate	Borehole	9.1	Bedrock Not Met	04/06/1966	280660	296920	to 100m	CORMEY		Cavan	35	Agri & domestic use	Excellent	1	764
		· ·										1					
2629SEW515		Land Commission, Sheppard Estate				00:00:00			to 100m	CORMEY		Cavan	35	Agri & domestic use			
2629SEW050		GSI BH T42	Borehole	351.7	2.1 Bedrock Met	00:00:00	280170		to 100m	CORGAREY	<u> </u>	Meath	2			<u> </u>	
2629SEW057			Dug well	5.5	Bedrock Not Met	00:00:00	283270	296180	to 100m	ARDAGH	+	Meath	3	Public supply (Co Co)			
2629SEW065	TW8	KINGSCOURT WATER SUPPLY	Borehole	107	11 Bedrock Met	02/02/1996	280570	205700	to 100m	DRUMGILL		Meath		Public supply (Co Co)	Excellent		1027
2023351000	1 000	NINGOUUNT WATER SUPPLY	DUIEII0IE	107		02/02/1996	2000/0	293790			+	weatn	2	Trablic supply (Co Co)	Excellent	ľ	1027
2629SEW076			Borehole	88.4	11.6 Bedrock Met	23/04/1996	283460	295560	to 100m	ARDAGH		Meath		Agri & domestic use	Good		273
			20101010	00.7		20/04/1000	200-00	20000		, in Bridin	1	moath	<u> </u>			ł	
2629SEW505	TW 11	Kingscourt Regional Water Supply	Borehole	91.4	4.5 Bedrock Met	01/01/1998		296580		BARLEYHILL		Meath	2	Public supply (Co Co)	Excellent	1	1824
2629SEW506	TW 12	Kingscourt Regional Supply	Borehole	135	8.8 Bedrock Met	01/01/1998		297050	to 100m	DESCART		Monaghan	34	Public supply (Co Co)	Excellent		500
7						Ι Τ											
1					8.8 Bedrock Met		282460	00005-	1. 100	DESCART		Monaghan		Public supply (Co Co)	Even II - :		800
2629SEW507	T\A/ 40	Kingscourt Regional Water Supply	Derrin	19.2		01/01/1998											

			1	1	1	1				
GSINAME	ABSTRDDM	SC M3DM	CAS1DIA MM	WTRSTRK1 M	WTRSTRK2 M	WTRSTRK3 M	WTRSTRK4 M WTRLOSS1 M	GENCOMMS	DRILLCOMMS	CASINGCOMS
2629SEW028				_						Used to pump out mine shaft
										72hr PT at 850 m3/d; Steady state
										conditions not reached. slow WL
2629SEW064	26	36	200	26	45	54	78	Water entry at 80-90ft. & 150-200ft. Bhole collapsing 270ft.		recovery after pump stopped.
2629SEW109								NERDO well 34/5b		
2629SEW110 2629SEW112								NERDO well 34/5c NERDO well 34/1a		
2629SEW112 2629SEW113			-			-		NERDO well 34/1a NERDO well 34/2f. Depth >55m		
2629SEW113								NERDO well 34/2g		
2629SEW114								NERDO well 34/5a		water levels are m above OD, not bgl
20230200110										HARD WATER, IRON PRESENT.
2629SEW131			152							POUNDING BORING MACHINE.
			-							MECHANICAL/POUNDING BORING
2629SEW134			152					Drilled by Dunnes, Dundalk		MACHINE.
										NOT IN USE AT TIME OF
2629SEW135			152					Drilled by Dunnes, Dundalk		INFORMATION (02-10-1972).
								sustainable yield = overflow of 1300m3/d. Well plugged in		ARTESIAN CONDITIONS WATER
2629SEW145		377	152	56.4	73.2	82		May 96 at request of Co.Co. as overflow very large.		WARM
										HARD WATER. DISUSED BOREHOLE.
										DUG TO 10M(1219MM) AND THEN
			150							BORED BY GYPSUM CO. LTD.
2629SEW146			152	2						SWL GREATER THAN 30.48M.
2629SEW151										
2629SEW151 2629SEW152							ł – – – – – – – – – – – – – – – – – – –	From John Jackson's thesis and NERDO report.		
2629SEW152 2629SEW153			<u> </u>			<u> </u>	<u> </u>	From John Jackson's thesis and NERDU report.		
2629SEW153 2629SEW154				-				from John Jackson's thesis and NERDO report		
2629SEW154								from John Jackson's thesis and NERDO report		
2629SEW155								from John Jackson's thesis and NERDO report		
2629SEW157								from John Jackson's Thesis and NERDO report		
2020021110/									Had to use 25k map becuase quarry now in area -	
2629SEW158								from John Jackson's thesis and NERDO report	couldn't find site on orthophotos	
									Had to use 25k map - quarry now in area, couldn't	
2629SEW159								from John Jackson's thesis and NERDO report	locate site on orthophotos.	
2629SEW160										
									Had to use 25k map - quarry in area, couldn't locate	
2629SEW161								from John Jackson's thesis and NERDO report	site on orthophotos.	
									had to use 25k map. quarry now in area, couldn't	
2629SEW162								from John Jackson's thesis and NERDO report	pinpoint site on orthophotos	
									had to use 25k map. quarry now in area, couldn't	
2629SEW163			-			-		from John Jackson's thesis and NERDO report	pinpoint location on orthophotos.	
2629SEW164								from John Jackson's thesis and NERDO report	had to use 25k map for grid ref. quarry in area so couldn't pinpoint location on orthophotos	
2629SEW164				-				from John Jackson's thesis and NERDO report.		
2629SEW165										
2629SEW168										
2629SEW171									owned by Limestone Industries, sampled by EPA	vield comes from EPA records
								Re-Drilled by Dunnes, Dundalk		
2629SEW172			127	,				Oringinal depth 91.4m but DtB not recorded	Location from site map included	
								Drilled by Tom Connell, Blackrock, Co Dublin		
2629SEW177	23.2	3.77						Shale		4 hr test
2629SEW178			152					Drilled by Tom Connell, Dublin		4 hr test
2629SEW503		14.8	200	27	40		ļ			10 day pump test
2629SEW504				30	40	1	l			
00000514/505										72 hr test at 2688 m3/d TW 9 10 11
2629SEW508		470	200	41.5	44.5	51.5	54.5			monitored during test no impact
2629SEW511							<u> </u>			
2629SEW514	2.1	364	152					Drilled by contract		Yield estimated from Bailer test
2023020014	2.1	304	102	•		<u> </u>				
2629SEW515										
2629SEW050			1	1	1	1		Info. from John Jackson's Thesis		
2629SEW057			1	ł	1	1		Co. Co. Hand Pump		
							1			72hr PT at 1027m3/d. Flow from shale,
2629SEW065	8.5	120.8	150	88	94			water entry 285-290ft. & 308-310ft. Lining to 84ft.		limited extend indicated.
					_			Drilled by Dunnes, Dundalk		
2629SEW076			203	42.7	76.2			White Limestone		Yield estimated by Dunnes W S Ltd
2629SEW505	30.5	59.84								
2629SEW506			250	16	125	j	ļ			
										well designed to investigate GW supply
2629SEW507			300	6	10					in shallow red Sst supported by gravels

Table A1.1d Kingscourt Trial Wells and Observation Wells Data From PC Field Work, WYG 2003 and Gypsum Limited (Minerex) 2003 and 2010

	1	тос										
		Measured					TOCEst					
Name	Ref (TOC)	mOD Poolbeg		GLEst25"/6"Sp Ht mOD Malin	GLEstDTM mOD Malin	Refmagl	mOD Malin	GWLmbRefFb03	GWLmODFb03	GWLmbgl23ap0	GWLmODFb10	DateFb2010
1-H-P		55.028								¥	45.438	26/02/10
1-J-PD 1-J-PS		46.425 46.445									46.175 35.025	26/02/10 26/02/10
95-A-1D 95-A-1S		62.675 62.675									17.005 39.005	08/02/10 08/02/10
DrGsat_DWbh		43.79	41.08					82.05			-41.59	19/02/10
M101P M102P	Top 20mm dip tube	52.32 42.36				0.26		14.63 0.53	34.98 39.12		29.302 41.82	19/02/10 19/02/10
M103P		53.7	50.99					15.93	35.06			
MW-1-P1 MW-1-P2		51.82 51.82									-5.04 -20.49	08/02/10 08/02/10
MW-1-P3		51.82	49.11								49.01	08/02/10
MW-2-P1 MW-3-P1	Top 6" steel well cover	51.32 52.25				0.97					49.87 -8.9	08/02/10 08/02/10
MW-3-P2		52.27	49.56								-20.15	08/02/10
MW-4-P1 MW-4-P2		53.8 53.8									3.63 1.66	08/02/10 08/02/10
O3A-P -1	Top 6" steel well cover	41.09				0.75					31.07	08/02/10
O3A-P -2 BH01	Top 6" steel well cover Top 6inch S.C.	41.13	38.42	none	39.61	0.75	39.4	no data	no data		37.02	08/02/10
BH03	Top 20mm dip tube Top 6inch S.C.			35.81672		-0.72 -0.5						
BH04	Top 6inch S.C.			None	58.71	-0.5	58.21					
BH05	Top 6inch S.C.			34.7804	37.79	0.18	34.9604			1.16		
BH06	Top 6-inch plastic stick-up			34.53656		-0.27						
BH07 BH08	Top 6inch S.C. Top 6inch S.C.			32.342	33.82		33.92					
BH09 BH10	Top 6inch S.C. Top 8inch S.C.			34.4756 None	46.57	-0.34 0.41	34.1356 46.98					
BH11	Top 8inch S.C.			29.5246		0.38	29.9046					
BH12 BH13	Top 6inch S.C. Top 6inch S.C.			64.9556 28.6844		-0.19 0.03						
BH14	Top 6inch S.C.			None 28.6844	39.62	-0.74	38.88					
GW01	Ground Level				31.39	0	31.39					
BH02	Top 6inch S.C.			None	47.7	0.6		no data	no data			
BW01 BW02	Top 8inch S.C. Top 8inch S.C.		GL = 34.63	31.0896		0.45		0.35	34.28 31.3696			
DWOL				01.0000		0.40	01.0000	0.17	01.0000			
BW03	1inch pipe invert at BH			None	34.55	0.18	34.73	0	>34.55			
					01.00	0.10						
DW01 DW02				57.9266 59.1644			57.9266 59.1644	18.9	39.0266 57.9644			
DW03				28.9892			28.9892					
DW04	Top 6-inch plastic casing			28.3796		0.21	28.5896	Artesian	>28.59			
DW06				71.966			71.966	1.34				
DW07				42.672			42.672	9.25	33.422			
DW08					48.43		48.43	0.26	48.17			
DW09					47.08		47.08	15	32.08			
DW11					53.2		53.2	21.55	31.65			
DW12					48.24		48.24	1.77	46.47			
DW13					46.78		46.78	no data	no data			
DW14					42.77		42.77	no data	no data			
DW15	T OL LOO				35.53		35.53	0.78				
DW16 DW17	Top 6inch S.C.			None	31.43 30.01	0	31.43 30.01	1.63 1.83	29.8 28.18			
DW40					05 50		05 50		an data			
DW18 DW19					35.53 28.33		35.53 28.33	no data 1.62	no data 26.71			
DW20					36.4		36.4	no data	no data			
DW21	Top 6inch S.C.			36.3044		0.2	36.5044	0.95				
DW22 DW23					40.87 40.22		40.87 40.22	1.95 1.87	38.92 38.35			
DW24					40.07		40.07	no data	no data			
DW25 MHPW2	Top 6inch S.C.	34.12	31.41	37.25		0.29	37.54352	1.71 Artesian	35.83352 >31.41			
	_											
OW01	Top 6inch S.C.	54.93	52.22			0.14		13.03	39.19			
OW02	Top Diphole in 8" SC cover	53.69				0.335		11.7	39.28			
OW04		73.68	70.97					>20	<50.97			
OW05	Top Diphole in 6" SC cover	63.33				0.08		20.75				
OW06 TW01	Top Diphole in 6" SC cover	44.54	41.83		61.75	0.08	61.75	Artesian no data	>41.83 no data			
TW02					107.68		107.68	no data	no data			
TW03 TW04					89.37 128.55		89.37 128.55	no data no data				
TW06					47.02		47.02	no data	no data			
TW07		1			75.51		75.51	13.7	61.81			
TW08 TW09	Top 8inch S.C.	52.86 67.89				0.175		10.89 17.99				
TW09 TW11	Top 8inch S.C.	67.89 36.7				0.175		Artesian	47.19 >33.99			
TW12	Top 8inch S.C.			31.0896		0.24	31.4296	Artesian	S31 43			
				31.0090		0.34	01.4290	Antesidfi	-01.70			
TW14	Top 8inch S.C.	39.55	36.84			0.25		7.59	29.25			
						0.20						
TW14A		41.16	38.45					9.17	29.28			
TW15 TW16		59.7 70.77						17.68 16.81	39.31 51.25			
	1		00.00	1	1	I		10.01	51.25			

Table A1.1d Kingscourt Trial Wells and Observation Wells Data From PC Field Work, WYG 2003 and Gypsum Limited (Minerex) 2003 and 2010

3

114 P 44.44 1150/0									
14.9 40.448 110010 Image of the set of the									
13-PD 13-PD <th< th=""><th>Name</th><th>WLbRf8JL10</th><th></th><th></th><th>WL1bRfSp10</th><th>Date1Sp10</th><th>WL2bRfSp10</th><th>WL2mODSp10</th><th>Date2Sp10</th></th<>	Name	WLbRf8JL10			WL1bRfSp10	Date1Sp10	WL2bRfSp10	WL2mODSp10	Date2Sp10
65.10 11.998 000010 000910 0 0 0 0 M101P 23.08 113610 0 20.08 78.25 2003201 M101P 21.14 020910 0 0 78.25 2003201 M102P 4.16 0.00010 0 0 78.25 2003201 M102P 4.04 0.00010 0 0 0 0 M112 4.04 0.00010 0 51.72 1.222 2003201 M112 4.01 0.00010 0 10.12 22.82 2003201 M141 0.01 0.01010 0 10.12 22.82 2003201 M141 0.01 0.01010 0 10.12 22.82 2003201 M141 0.01 0.01010 0 10.12 22.82 2003201 M141 0.01 0.0117 33.84 2003201 10.12 22.82 2003201 M141 0.010 0.0117	1-J-PD								
64.16 93.06 000010 0 <th0< th=""> <th0< th=""> 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<></th0<>									
Montp 2008 10000 2008 10000 2008 10000 MU 147 -2.1.4 020010 - - - - MU 147 -4.0.4 020010 - - - - MU 147 -4.0.4 020010 - 0.0.7 -1222 259501 MU 147 -4.0.7 020010 - 0.0.7 -1222 259501 MU 47 -4.0.7 020010 - 0.0.7 -1222 259501 MU 47 -0.0.9 020010 - 1.0.12 2222 259501 MU 47 -0.0.9 020010 - 1.0.12 2222 259501 MU 47 -0.0.9 020010 - 1.0.12 2228 259501 MU 48 - - 1.0.13 3.0.0 259501 289501 289501 289501 289501 289501 289501 289501 289501 289501 289501 289501 289501 289501	95-A-1S		39.005	02/06/10					
Holge 41.68 11.990 A <tha< th=""> A A <</tha<>							23.09	26.52	28/09/2010
W1-1-P1 -2.14 0.00010 - - - - W1-2-P1 -4.01 0.00010 - 6.17.3 2.200321 W1-2-P1 -4.01 0.00010 - 6.17.3 2.200321 W1-2-P1 -4.01 0.00010 - 6.17.3 2.200321 W1-2-P2 -2.07 0.00010 - 6.17.3 2.200321 W1-2-P1 -0.007 0.00010 - 1.012 2.83 2.00021 SAP-1 -0.007 1.0010 - 4.47 3.83 2.00021 SAP-2 -0.007 1.0010 - 4.47 3.83 2.00021 SAP-2 -0.007 1.0010 - 4.47 3.83 2.00021 SAP-1 -0.007 - 1.12 3.34 2.20021 2.80021 SAP - - 1.12 3.34 2.80021 2.80021 SAP - - 1.12 3	M102P								20/00/2010
MM -1-P2 -4.94 ODEN10 - - - W1 -1-P2 -46.7 000610 -	M103P		-21 1/	02/06/10					
WW 2-P1 4013 000010 61.76 22.8969(1) WY 3-P1 -0.021 0.00010 61.76 -1-22 28.9969(1) WY 3-P1 -0.027 0.00010 -1-12 28.9969(1) -1-12 28.9969(1) S3A.P-1 -0.057 1.06110 -10.12 38.83 29.9959(1) S3A.P-2 -9.656 1.09110 -4.627 33.83 29.9959(1) S3A.P-1 -0.057 1.06110 -1.12 33.844 29.9959(1) B405 - - - 1.12 33.844 29.9959(1) B406 - - 1.12 33.844 29.9959(1) B406 - - 1.14 30.842 29.9959(1) B406 - - 1.13 33.844 29.9959(1) B406 - - 1.14 30.995 29.9959(1) B401 - - 1.13 29.9959(1) 29.9959(1) B411 - - -	MW-1-P1 MW-1-P2								
WH 3-P1	MW-1-P3								
VM 4-P1 2.97 0.998-10 0.1 V V 03A, P-1 0.07 11.06010 0.10 32.82 2005011 03A 0.05 11.06010 0.05 28.62 2005011 0101 0.05 28.63 2005011 0.05 28.63 2005011 0104 0.05 28.64 2709201 0.05 28.64 2709201 0104 0.05 28.64 200501 0.05 28.64 2809201 0104 0.05 28.64 28.646 2809201 28.64 28.99201 <td>MW-3-P1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61.76</td> <td>-12.22</td> <td>28/09/2010</td>	MW-3-P1						61.76	-12.22	28/09/2010
WM 4.P2 0.98 0.090 0.000 1.04010 1.041 0.42 0.88 0.800201 0.3A,P 2 0.86.9 11.06110 0.44 0.88 0.800201 0.3A,P 2 0.86.9 11.06110 0.161 0.44 0.88 0.800201 0.3A,P 2 0.86.9 11.06110 0.124 0.41 0.828 2800201 0.3A,P 2 0.86.9 11.06110 0.124 0.42 2802801 0.3A,P 2 0.34.97 0.34.97 2800201 1.34 32.8002 2800201 0.44 0.44 0.828 2800201 1.44 38.82 2800201 0.414 0.428 0.4001 38.82 2800201 1.38 2800201 0.414 0.428 0.4001 2.427 2.40148 2800201 1.38 2800201 0.414 0.409840 0.417 2.705201 3.413 2800201 3.413 2800201 0.414 0.414 0.4473 0.400710 2.40010	MW-3-P2								
D3A.P-1 D372 1108010 11021 28.82 2000201 BM1 10.65 2.88.82 2200201 38.82 2200201 BM3 10.81 2.81.92 200201 35.82 200201 BM3 12.40 25.22 200201 35.82 200201 BM3 1.12 13.84.9 25.26 200201 35.82 200201 BM3 1.12 13.84.9 25.266 200201 35.82 200201 BM3 1.12 13.84.9 25.826 200201 36.82 200201 BM3 1.12 13.83 25.826 200201 36.82 200201 BM3 1.12 1.12 21.06 200201 36.82 200201 BM3 1.12 1.12 22.062 200201 36.83 200201 21.26 200201 BM3 2.000201 1.73 37.75 200201 37.75 200201 37.75 200201 BM3 1.90<									
He1 Image: set of the set	O3A-P -1		30.78	11/06/10					28/09/2010
BH3 Image: Bh3			36.59	11/06/10					
Hest Image: second	BH03						1.93		28/09/2010
BHOR Index Index <thi< td=""><td>BH04</td><td></td><td></td><td></td><td></td><td></td><td>12.49</td><td>45.72</td><td>28/09/2010</td></thi<>	BH04						12.49	45.72	28/09/2010
BHOR Index Index <thi< td=""><td>BH05</td><td></td><td></td><td></td><td></td><td></td><td>1.12</td><td>33.8404</td><td>28/09/2010</td></thi<>	BH05						1.12	33.8404	28/09/2010
Hee 1 4.4.3 20.20 2809201 H10 11.7 35.20 2809201 H11 1 11.7 35.20 2809201 H12 1 11.7 35.20 2809201 H11 1 24.72 44.0456 2809201 H12 1 0 0.909910 1.73 27.148 2809201 SW01 19.72 14.91 0607/10 23.39 090910 0.34.73 2709201 SW01 19.72 14.91 0607/10 23.39 090910 0.34.73 2709201 SW02 0 0.47 090910 0.34.73 2709201 SW02 0 0 0.03 28.558 2709201 SW02 0 0 0.03 28.558 2709201 SW02 0 0 0.03 28.558 2709201 SW03 0 0.03 28.558 2709201 SW04 0 0 0.03 28.558 2709201 SW05 0 0 0.03 28.558 2709201 SW04 0 0 0.03 28.558 2709201 SW05 0 0 0	BH06						1.34	32.92656	28/09/2010
Hee 5.86 28.2462 8009201 H11 1 2.78 27.1242 8009201 H11 1 2.78 27.1242 8009201 H12 1 2.78 27.1242 8009201 H13 1 2.78 27.1242 8009201 H14 1 2.78 27.1242 8009201 H14 0 0.999210 2.88 31.75 8009201 H14 0 0.47 0990910 2.88 31.75 8009201 H15 0.47 0990910 2.88 31.75 8009201 H14 0 0.47 0990910 2.88 31.75 8009201 H15 0.47 090910 0.44 31.078 8079201 H15 0.47 090910 0.44 31.078 8079201 H15 0.47 090910 0.44 31.078 8079201 H16 0.47 090910 0.47 31.75 8009201 H17 0.47 090910 0.47 31.75 8009201 H14 0.03 28.5596 2709201 14.99 9001 H14 0.03 28.5596 2709201 14.99 <td>BH07 BH08</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>28/09/2010 28/09/2010</td>	BH07 BH08								28/09/2010 28/09/2010
H11	BH09						5.89	28.2456	28/09/2010
H12 24.72 40.0468 8093201 H14 0 090910 1.18 27.554 8093201 H14 0 090910 288 37.16 8209201 H17 19.72 14.91 080710 23.93 930910 288 31.0756 2709201 H19 0.47 990910 2.84 31.0756 2709201 2709201 H17 0 0.47 990910 0.46 31.0756 2709201 H10 0 0.90910 0.46 31.0756 2709201 H10 0 0.90910 0.46 31.0756 2709201 H10 0 0.03 28.5566 2709201 H10 0.03 28.5566 2709201 H11 H12 H14 H14 H14	BH10 BH11								28/09/2010
H13 Image: state s	BH11 BH12								28/09/2010
SW01	BH13						1.18	27.5344	28/09/2010
3H02 17,665 30,635 27,09201 SW01 19.72 14.91 08,07/10 23.39 909010 2.88 31.75 2803201 SW02 0 0.47 090910 0 54.73 2709201 SW03 0 54.73 0807/10 0 090910 0 54.73 2709201 SW04 0 0 090910 0 54.73 2709201 SW05 0 0 0 090910 0 54.73 2709201 SW05 0 0 0 0003 28.556 2709201 SW06 0 0 0.03 28.556 2709201 SW06 0 0 0.03 28.556 2709201 SW07 0 0 0.03 28.556 2709201 SW07 0 0 0.03 28.556 2709201 SW14 0 0 0 0 0 SW15 0	BH14 GW01				٥	09/09/10		37.15	28/09/2010
WM01 19.72 14.91 08/07/10 23.38 09/99/10 2.88 31.758 2/09/201 W02 0.47 09/09/10 0.46 31.0798 2/09/201 W03 0.54.73 08/07/10 0 09/09/10 0.46 31.0798 2/09/201 W04 0.54.73 08/07/10 0 09/09/10 0.54.73 27/09/201 W04 0.54.73 08/07/10 0 09/09/10 0.54.73 27/09/201 W04 0.03 28.5596 27/09/201 0.03 28.5596 27/09/201 W04 0.03 28.5596 27/09/201 0.03 28.5596 27/09/201 W04 0.03 28.5596 27/09/201 0.03 28.5596 27/09/201 W11 0.03 0.03 28.5596 27/09/201 0.03 28.5596 27/09/201 W14 0.03 0.03 28.5596 27/09/201 0.03 28.09/201 0.03 28.09/201 W15 0.03						00,00/10			
SW02 0.47 0909/10 0.46 31.0796 27.09/2011 SW03 0.534.73 06/07/10 0 99/99/10 0.534.73 27/09/2011 SW03 0 0 0 0.03 28.5596 27/09/2011 SW04 0 0 0.03 28.5596 27/09/2011 SW04 0 0.03 28.5596 27/09/2011 SW05 0 0.03 28.5596 27/09/2011 SW06 0 0.03 28.5596 27/09/2011 SW07 0 0 0.03 28.5596 27/09/2011 SW08 0 0 0.03 28.5596 27/09/2011 SW11 0 0 0 0 0 SW12 0 1.6 29.83 28/09/2011 SW14 0 0 1.6 29.83 28/09/2011 SW14 0 1.6 29.83 28/09/2011 0 0 0 0 0 0	BH02 BW01	10.70	1/ 01	08/07/10	00 OC	09/00/10			
W01 Image: state sta	BW01 BW02	19.72	14.91	06/07/10					
W01 Image: state sta									
DW02 Image: Constraint of the second se	BW03	0	>34.73	08/07/10	0	09/09/10	0	>34.73	27/09/2010
DW04 0.03 28.558 27.09/2011 DW07	DW02								
WW07 Image: Second	DW04						0.03	28.5596	27/09/2010
DW08 Image: Constraint of the second se	DW06								
DW09 Image: state st									
DW12 DW13 DW14 DW13 DW14 DW14 DW14 DW14 DW14 DW15 DW16 DW16 DW16 DW16 DW17 DW16 DW16 DW17 DW16 DW17 DW16 DW17 DW16 DW17 DW18 DW17 DW18 DW19 DW14 Status	DW09								
DW13	DW11								
DW13	DW12								
DW16 Image: Constraint of the second se	DW13 DW14								
DW16 Image: Constraint of the second se									
DW17 Image: Constraint of the second se	DW15 DW16						1.6	29.83	28/09/2010
DW19 Image: state st	DW17								
DW19 Image: state st	DW18								
DW21 1.44 35.0644 28/09/2011 DW23 1 1 35.0644 28/09/2011 DW23 1 1 1 1 1 DW24 1 1 1 1 1 1 DW25 1 3 34.54352 28/09/2011 1<	DW19								
DW22 Image: Constraint of the second se	DW20								
DW23	DW21						1.44	35.0644	28/09/2010
DW24 Image: Constraint of the second se									
WHPW2 Image: constraint of the second s	DW24								
DW01 13.205 39.015 27/09/2010 DW02 12.19 38.79 27/09/2010 DW04 20.31 40.31 27/09/2010 DW05 20.31 40.31 27/09/2010 DW06 0 0 0 DW06 0 0 20.31 40.31 DW06 0 0 0 DW06 0 0 0 DW06 0 0 0 DW06 0 0 0 TW01 0 0 0 TW02 0 0 0 TW03 0 0 0 TW06 0 0 0 TW07 0 0 0 TW08 0 0 0 TW10 0 0 0 TW11 0 0 0 TW12 0 0 0 TW14 7.86 28.98 27/09/2010 TW14 0 0 0 TW15 0 0 0	DW25						3	34.54352	28/09/2010
DW02 12.19 38.79 27/09/2011 DW04 20.31 40.31 27/09/2011 DW05 20.31 40.31 27/09/2011 DW06 0 0 941.83 27/09/2011 DW06 0 0 941.83 27/09/2011 DW06 0 0 941.83 27/09/2011 TW02 0 0 941.83 27/09/2011 TW02 0 0 0 0 0 TW03 0 0 0 0 0 0 TW04 0 0 0 0 0 0 0 TW05 0<									
DW04 Image: constraint of the second secon	OW01						13.205	39.015	27/09/2010
DW05 20.31 40.31 27/09/2011 DW06 0 0 >41.83 27/09/2011 TW02 0 0 >41.83 27/09/2011 TW02 0 0 >40.31 27/09/2011 TW02 0 0 >41.83 27/09/2011 TW03 0 0 0 0 0 TW04 0 0 0 0 0 TW06 0 0 0 0 0 TW07 0 0 0 0 0 0 TW08 0 0 0 >33.99 27/09/2010 0 TW11 0 0 0 >31.43 27/09/2010 0 TW12 0 0 0/09/09/10 0 >31.43 27/09/2010 TW14 7.86 28.98 27/09/2010 0 0 0 0 TW15 0 0 0 0 0 <t< td=""><td>OW02 OW04</td><td></td><td></td><td></td><td></td><td></td><td>12.19</td><td>38.79</td><td>27/09/2010</td></t<>	OW02 OW04						12.19	38.79	27/09/2010
TW01 Image: Constraint of the second sec	OW05								27/09/2010
TW02 Image: Constraint of the second sec	OW06						0	>41.83	27/09/2010
TW03	TW01 TW02								
TW06 Image: Constraint of the second sec	TW03								
TW08 Image: Constraint of the second se	TW04 TW06								
TW09 16.24 48.94 27/09/2010 TW11 0 0 >33.99 27/09/2010 TW12 0 09/09/10 0 >31.43 27/09/2010 TW14 7.86 28.98 27/09/2010 TW14A 1 1 1 1 TW15 1 1 1 1 1									
TW12 0 09/09/10 0 >31.43 27/09/2010 TW14 7.86 28.98 27/09/2010 TW14A 1 1 1 TW15 1 1 1	TW09								27/09/2010
TW14 7.86 28.98 27/09/2010 TW14A 1 1 1 1 TW15 1 1 1 1	TW11						0	>33.99	27/09/2010
TW14 7.86 28.98 27/09/2010 TW14A 1 1 1 1 TW15 1 1 1 1									
TW14A TW15	TW12				0	09/09/10	0	>31.43	27/09/2010
TW15	TW14						7.86	28.98	27/09/2010
	TW14A								
	TW15								
	TW15 TW16								

Table A1.2 Water Quality Data for Kingscourt Trial Wells and Gypsum Limited Monitoring Wells Data From KTC and WYG 1995 to 2003, and Minerex 2003 to 2010

																	Ionic					<u>т</u>	
Borehole ID	Date	Data Source	Comment	PARAMETERS		Magnesium	Potassium	Sodium	Total Ammonia	Chloride					meq Cat	meq An	Balance	IB Fail?	Hardness	Conductivity	Aluminium		Manganese
		-		UNIT	Ca mg/l	Mg mg/l	K mg/l	Na mg/l	NH4 mg/l	CI mg/I	NO3 mg/l N			CaCO3 mg/l r	meq/l	meq/l	%		CaCO3 mg/l		Al mg/l	Fe mg/l	Mn mg/l
				EPA Threshold DWS				150 200	0.23	24 250	37.5 50		187.5 250							800 2500	0.15 0.2	0.2	0.05
TW02	11/01/1995	KTC		DWS	33	14	2.1				6 <0.5	<0.01	35	122	3.35	3.626309524	-3.98	3	140		0.2	3.1	
TW03	10/03/1995	-			75						-	<0.01	69	252		6.991785714	1.98		319		< 0.05	3.5	
BW01	02/06/1995		TW05		42		-				7 <0.5	<0.01	9.2	150		3.677380952			150		<0.05	0.11	
BW01	06/06/1995		TW05		42		=.•				8 <0.5	<0.01	9.2	150	3.57		-1.91		150		<0.05	0.11	
BW01	09/06/1995		TW05		41	11		12	2 0.05	1	5 <0.5	<0.01	8.6	143	3.55	3.47	1.21		148		< 0.05	0.13	
BW01 BW01	28/02/2003 04/03/2003		PW5 PW5		42	10 5.1							8						146			0.19 <0.01	0.56
BW01	11/03/2003	-	PW5		40			9.1	<0.1	1	4 <0.5	<0.01	8	140	3.63	3.37	3.73	2	151		i <0.05	<0.01	
BW01	19/03/2003		PW5		39			0.1	(0.1		4 (0.0	20.01	8	140	0.00	0.07	0.70	,	137			0.02	
BW01	25/03/2003		PW5		39	9.9	2.7	8.5	ō <0.05	1	4 <0.5	<0.01	8	142	3.21	3.42	-3.04	Ļ	138		o <0.05	0.09	
BW01	01/04/2003		PW5; Filtered Sample		39	10							8						138				<0.01
BW01	03/04/2003		PW5		40			10				<0.01	10		3.40				142		<0.008	0.09	
BW01	04/04/2003		PW5		40	11	2	10	0.02	1		< 0.01	10	168	3.40	3.97	-7.66	Fail	142.5	270	<0.008	0.091	
BW01 BW01 C35/3c	07/04/2009 05/03/1980		BW01		34.8	10.8	3.5	11		1	5 0.8 2 0.18	<0.01	ہ 4.5	146	3.22	3.36	-2.17	7	132		<0.01	<0.02 0.78	
BW01 C35/3c	25/03/1980				40.8					1			7.3	140	3.12			8 Fail	132		5	1.04	
BW01 C35/3c	26/03/1980		10am		39.2					1			7.4	148		3.43			146			+ ***	
BW01 C35/3c	26/03/1980	NERDO	4pm		40		2.83	10.2	2	1	2 0.27		6.5	150	3.44	3.48	-0.67	7	146	310)	0.596	0.44
BW01 C35/3c	27/03/1980				40	-							6.4	146	3.46				148			0.25	
TW07	25/08/1995	-			57					-		< 0.01	38	219	5.95				237		< 0.05	0.83	
TW08 TW08	21/02/1996 16/04/2002				100 106						4 <0.5 2 <0.5	<0.01 <0.01	113 150	242 234	7.54				328		<0.05 <0.05	0.38 <0.01	0.01
TW08	22/04/2002				106			18		1		<0.01	150	234	7.85				347				
TW09	02/03/1996			1	34				-		0	<0.01	33	265	5.17				271				
TW09	16/04/2002	WYG			54			16	6 0.1			<0.06	78	172	5.39				230			15 0.02	
TW09	22/04/2002				58		-	3	0.09			<0.01	60	224	5.61			Fail	245				
BW03	07/03/1996		TW10		51			9.2	0.05	1	5 <0.5	<0.01	16	176	4.32	4.28	0.41	-	193				
BW03	28/02/2003		TW10		53								15						194 152		1	0.01	0.22
BW03 BW03	04/03/2003 11/03/2003		TW10 TW10	+	49 55			8.4	<0.1	1	5 <0.5	0.01	13 15	175	4.41	4.24	1.94	1	152		< 0.05	<0.01 <0.01	0.22
BW03	19/03/2003		TW10	1	49			0.4			<0.0	0.01	15	175	4.41	4.24	1.84		180			<0.01	0.23
BW03	25/03/2003		TW10		49			8.1	0.08	1	5 <0.5	0.06	15	176	4.02	4.26	-2.95	5	180		<0.05	0.01	
BW03	01/04/2003	WYG	TW10; Filtered Sample		50	15							15						187	350)		<0.01
BW03	03/04/2003		TW10		50			g	0.09		5 <1	<0.01	16		4.17				195		<0.025	0.02	
BW03	04/04/2003	-	TW10		50	-		9	0.09		•	< 0.01	16	208	4.17	-			195				
TW11 TW11	05/02/1998 16/04/2002				50 53							<0.01 <0.01	27 21	147 170	4.01				174				0.2
TW11	22/04/2002			1	53			0.4				<0.01	21	204	4.13				100				
TW12	12/02/1998			1	45							<0.01	16	173	4.12				182		<0.05	0.043	
BW02	12/02/1998	KTC	TW13		50	16	1.4	-			3 <0.5	<0.01	17	176	4.30		-		191	355	< 0.05	0.09	0.15
BW02	28/02/2003		TW13		56								16						210		5	0.13	
BW02	04/03/2003		TW13		53								14						165			< 0.01	0.2
BW02	11/03/2003		TW13 TW13		60	17	1.8	g	<0.1	1	5 <0.5	0.02	17	192	4.85	4.62	2.44	-	195 196		< 0.05	0.02	
BW02 BW02	19/03/2003 25/03/2003		TW13		52 55	16	1.8	8.6	õ <0.05	1	5 <0.01	<0.05	18 18	200	4.50	4.80	-3.23	2	203				
BW02 BW02	01/04/2003		TW13; Filtered Sample	1	55		110	0.0	<0.05		<0.01	~0.05	18	200	4.30	4.60	-3.23		203				<0.01
BW02	03/04/2003		TW13		56			10	0.05	1	5 <1	<0.01	20		4.76	5			212				
BW02	04/04/2003		TW13		56	-	1	10	,	1	5 <1	<0.01	20	239	4.76	5.63		8 Fail	212.5				
TW14	25/02/1999				90				10			< 0.01	82	250	8.00			Fail	307				
TW14A TW14A	16/04/2002 22/04/2002				172 198						-	<0.01 <0.01	496 509	200 224	13.75				574 634		<0.05 <0.01	0.01	
TW14A TW15	16/04/2002			+	198 360						-	<0.01	509 950	186	21.75				1022		<0.01	0.02	
TW15	22/04/2002			1	300							<0.01	863	225	23.46				1022		<0.03	0.162	
TW16	16/04/2002				45							<0.01	89	123	4.75				420	420	<0.05	0.16	
TW16	22/04/2002				46	20	2.0	22.0			7 <1	<0.01	68	149	4.98	5.17	-1.88	3	190		′ <0.01	2.29	
BH05		Dunnes/EuroEnv	Hagwell Construction Cabra Borehole 1						0.21			< 0.003							155				
BH05	26/04/2007	Dunnes/EuroEnv	Hagwell Construction Cabra Borehole 1						<0.09			<0.003							151	366	0.13	34 0.1	┢────
03A-P1	Nov 00	Minerex	Upper Mudst. (Should be NamSSTSH??)		479.6	53.82	18.6	212		6	5 <0.3		1431	NDP	38.16					2721			1
03A-P1		Minerex			479.6					0	10.0		929	20	60.73	30.55	33.05	in/a		3169	1	++	<u> </u>
03A-P1		Minerex	İ.		683.5								3632	120	78.79					5483.3		+ +	
03A-P1	Jun-06	Minerex			432.9	95.9	13.8	504.1	0.29	319.	.9 0.17		4027.7	100	51.92	95.05	-29.34	n/a		4120			
03A-P1		Minerex	l		408.9		15.33	442					2666	100	46.79	66.14				3950]	<u> </u>
03A-P1	May-07	Minerex	Haner Mudet (Obsuid b)	+	475.8	103.3	18.3	510.1	0.31	257.	2 <0.125		4288.4	144	55.06	99.57	-28.78	n/a		4170	1	4	
M101P	Nov 00	Minerex	Upper Mudst. (Should be NamSSTSH??)		264.1	43.67	4.4	77	,		2 <0.3		772	70	20.30	17.83	6.50	n/a		1536			1
M101P M101P		Minerex		1	264.1 523					13.			729	10	33.37					2227		++	<u> </u>
M101P		Minerex		1	563								2803	62	36.21					2201		++	<u> </u>
M101P	Jun-06	Minerex			524.3	60.2	3.5	46.8	3 0.03	13.	7 <0.054		2454.5	90	33.36	53.33	-23.04	n/a		2320			
M101P		Minerex			462								1331	68	29.62					2170			L
M101P		Minerex			494								825.2	694	27.40					3650		<u> </u>	
MW3-P1		Minerex	Namurian/ Westphalian	+	412.6					1	40.0		1586	130	27.02					2264		4	
MW3-P1 MW3-P1		Minerex Minerex			864 605.5					30. 163.			818 2533	62 112	70.46					2342 2410		+	
MW3-P1 MW3-P1		Minerex		+	605.5 437.6			123.7					2533	112	42.64					2410		+	t
MW3-P1		Minerex	1	1	437.6					6.5			2415.8 837	120	46.81					2080		++	<u> </u>
MW3-P1		Minerex	İ.		472			51.8					2282.8	90	31.41		-22.61	n/a		3055		+ +	
MW3-P1		Minerex			642.5					14.			825	100	41.71					3186			
MW3-P1		Minerex			802.7	80.7	12.1			25.				538	54.48					2587	·		L
MW3-P1	Apr-10	Minerex	1	1	527	62.9	7.45	50	< 0.26	17.	.9 <0.3			105	33.96	2.61	85.72	n/a		2044	-1		1

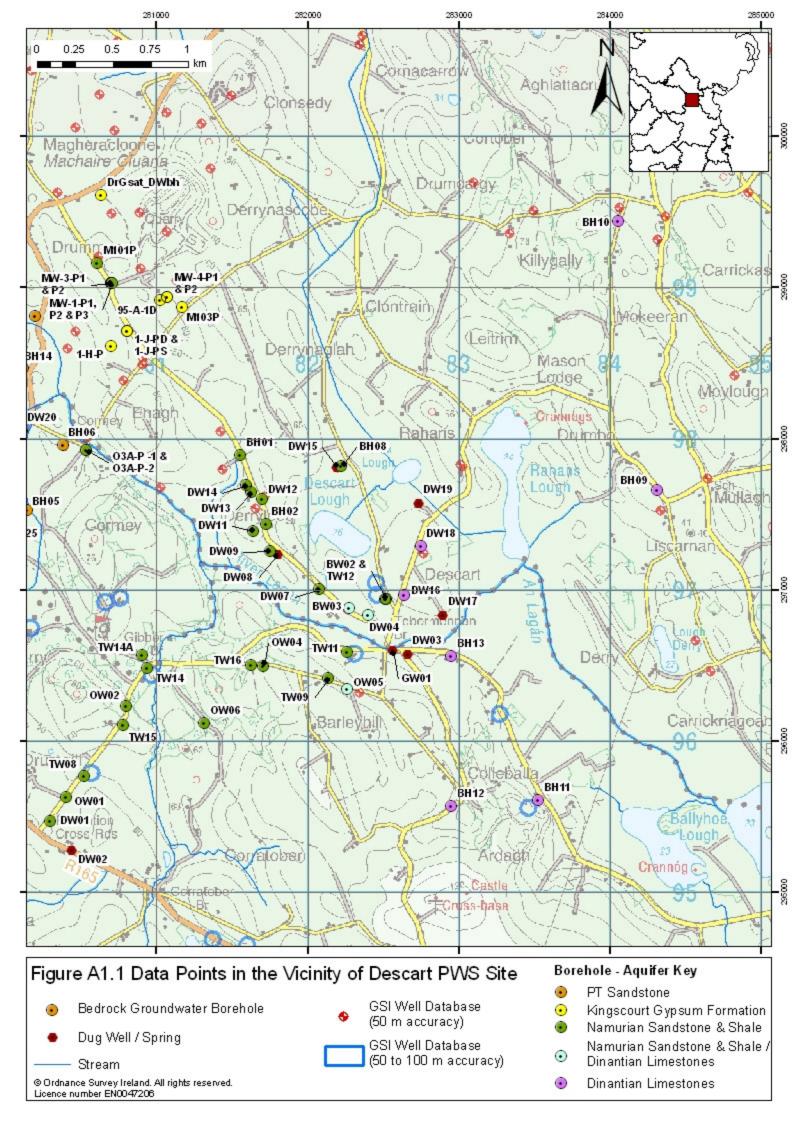

		ſ	1	1	1			1		1					
Borehole ID	Date	Total Coliforms No./100ml	Fecal Coliforms No./100ml	Total Barium ug/l Ba	ug/l B	Total Cadmium ug/l Cd	Total Chromium ug/I Cr	Copper ug/l Cu	Fluoride ug/l F	Total Lead ug/l Pb	Total Mercury ug/I Hg	Total Nickel ug/l Ni	Total Inorg P ug/l	Total Selenium ug/I Se	Total Silver ug/I Ag
		0	0		750 1000	3.75 5		1500 2000	1500	18.75 25			35	10	
TW02	11/01/1995	i v		D	1000	,		<10	1500	25				10	
TW03	10/03/1995	5	0	D				<10							
BW01 BW01	02/06/1995		0	0				<10 <10							
BW01	09/06/1995		•	0				<10							
BW01	28/02/2003		<u> </u>												
BW01	04/03/2003			-											
BW01 BW01	11/03/2003		0	0				<10							
BW01	25/03/2003		0	0				<1							
BW01	01/04/2003	3													
BW01	03/04/2003			0	10			<2							
BW01 BW01	04/04/2003		0	98	<12 30	<0.4 <0.02	<1 10	<2 1.4	<88 <100	<1 0.8	<0.1 <0.05	<2	36	<1 0.8	<0.3
BW01 C35/3c	05/03/1980		0		50	<0.0Z	10	1.4	<100	0.0	<0.03	2		0.0	
BW01 C35/3c	25/03/1980														
BW01 C35/3c	26/03/1980			-	-						-		-		
BW01 C35/3c BW01 C35/3c	26/03/1980 27/03/1980							1							
TW07	25/08/1995	5	0	D				<10							
TW08	21/02/1996		0	D				<10							
TW08 TW08	16/04/2002 22/04/2002		Nil	14	113.00	<0.5	<1	<10 <5	160	<1	0.1	<5	<30	<1	<0.3
TW09	02/03/1996		0	0	113.00	<u> </u>		<10	100		0.1	~0	~~~		~0.0
TW09	16/04/2002		Nil					<10							
TW09	22/04/2002		9	70	29.00	<0.5	<1	<5	142	<1	0.1	1	1 207	<1	<0.3
BW03 BW03	07/03/1996 28/02/2003		0	J				<10							
BW03	04/03/2003														
BW03	11/03/2003		0	D			<0.01								
BW03 BW03	19/03/2003 25/03/2003		0	n			<0.01								
BW03	01/04/2003		0	0			<0.01								
BW03	03/04/2003	3	0				<0.002								
BW03 TW11	04/04/2003		0	0 20	15		<1	<2 <10	<88	2	2 <0.1	<2	<24	<1	<0.3
TW11	05/02/1998		Nil	0				<10							
TW11	22/04/2002		1	50	<20	<0.5	<1	<5	129	<1	0.1	<5	<30	<1	<0.3
TW12	12/02/1998		9	0				<10							
BW02 BW02	12/02/1998		0	0				<10							
BW02	04/03/2003														
BW02	11/03/2003	3	0	D			<0.01								
BW02	19/03/2003		0				0.1								
BW02 BW02	25/03/2003		0	0			<0.1								
BW02	03/04/2003		0	D			<0.002								
BW02	04/04/2003			0 33	14	<0.4	<1	<2	<88	<1	<0.1	<2	<24	<1	<0.3
TW14 TW14A	25/02/1999		0 Nil	0				<10 <10							
TW14A	22/04/2002		Nil	48	126	<0.5	<1	<5	124	<1	0.1	<5	<30	<1	<0.3
TW15	16/04/2002		Nil					<10							
TW15 TW16	22/04/2002		1 Nil	12	162	<0.5	<1	<5 <10	200	<1	0.1	<5	<30	<1	<0.3
TW16	22/04/2002		Nil	18	24	<0.5	<1	<5	116	<1	0.1	<5	38	<1	<0.3
BH05	24/04/2007	0	0												
BH05	26/04/2007	· 0	0												
03A-P1	Nov-03	2									1				
03A-P1	May-05										1			<u> </u>	1
03A-P1	Nov-05														
03A-P1 03A-P1	Jun-06														
03A-P1 03A-P1	Oct-06 May-07							1			1				1
											1				1
M101P	Nov-03														
M101P M101P	May-05 Nov-05										<u> </u>				+
M101P	Jun-06							1			1				1
M101P	Oct-06	6									1				1
M101P	May-07							+			<u>_</u>				<u>_</u>
MW3-P1 MW3-P1	Nov-03 May-05														
MW3-P1	Nov-05					<u> </u>		1	1		1				1
MW3-P1	Jun-06	ò									1				1
MW3-P1	Oct-06							+			ļ			<u>_</u>	
	May-07	1	l				ļ								
MW3-P1 MW3-P1		2													
MW3-P1 MW3-P1 MW3-P1	Apr-08 Sep-08														

Table A1.2 Water Quality Data for Kingscourt Trial Wells and Gypsum Limited Monitoring Wells

Total Artimony ug/l Zn ug/lsbTotal Arsenic ug/lsbKNA Ratio (using meq) (% Sat)Dissolved of (% Sat)ug/l A I7.50.47.50.4I51III <th>d Oxygen</th>	d Oxygen
ug/l Zn ug/l Sb ug/l As [-] $\%$ 5 1 - - - - 1 5 1 - - - 2 - - - - - - 1 - - - - - - - 1 - <th></th>	
5 1 \sim - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	
Image: second	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
<1	
Image: second secon	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
80 <1	
80 <1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
80 <1	
80 <1	
80 <1	
Image: Constraint of the second se	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
36 <1	
36 <1	
36 <1	
36 <1	
36 <1	
36 <1	
36 <1	
36 <1	
36 <1	
34 <1 <1	
34 <1 <1	
34 <1 <1	
297<<1	
Image: state	
Image: sector of the sector	
Image: state	
Image: state of the state o	
Image: state of the s	

Table A1.2 Water Quality Data for Kingscourt Trial Wells and Gypsum Limited Monitoring Wells Data From KTC and WYG 1995 to 2003, and Minerex 2003 to 2010

	1		r						- T		T			
Borehole ID	Date	pН	Temp	Total Organic Carbon	Non-Carbonate Hardness	Non-Purg Org. Carb.	Colour	Turbidity	Fee CN	Total CN	Oxidisability	Dissolved Solids	Suspended Solids	Calcium Hardness
Borenoie ib	Dute	units	· · · ·	mg/l as C		C mg/l	Hazen	FTU	ug/l	ug/I CN	mg/l	mg/l	mg/l	mg/l CaCO3
				3		- 3			- g				3	J
		>6.5 & < 9.5												
TW02	11/01/1995	6.7		0.6				5	5					
TW03	10/03/1995	7		1.9			<5		50					
BW01	02/06/1995			<0.5			Ę		0.5	-	-			
BW01 BW01	06/06/1995 09/06/1995			<0.5			<5).4					
BW01 BW01	28/02/2003	7.5		0.6			<5	0	25	-				
BW01	04/03/2003	7.5											<10	
BW01	11/03/2003	7.7			18	<0.5	<5		0.5					
BW01	19/03/2003						10							
BW01	25/03/2003	7.5				<0.5	<5	0	15					
BW01	01/04/2003	7.7												
BW01	03/04/2003						<2		0.6					
BW01	04/04/2003			0.5			<2		0.6 0		1.2	294		
BW01	07/04/2009						<1	1		<30	<3			
BW01 C35/3c	05/03/1980											175		8
BW01 C35/3c	25/03/1980											109		102
BW01 C35/3c BW01 C35/3c	26/03/1980											124		98
BW01 C35/3c BW01 C35/3c	26/03/1980 27/03/1980						+	+			<u> </u>	169		100
TW07	25/08/1995	7.1		0.9			<5	+	11			130		100
TW07	21/02/1995	7.6		1			<5		3.4	1				1
TW08	16/04/2002			· ·	113	<0.5				1	1			
TW08	22/04/2002	7.69		1.2			<1		5.6 <0.5	<0.5	0.7	488		
TW09	02/03/1996	7.2	1	1.1			<5		3.8					
TW09	16/04/2002	7.4			58	1.0								
TW09	22/04/2002			2			<1	>20	<0.5	<0.5	1.6	314		
BW03	07/03/1996	7.9		0.69			<5		2.4					
BW03	28/02/2003	7.6					+	+	-				.10	
BW03	04/03/2003					-0.5	-5	<u> </u>	1				<10	
BW03 BW03	11/03/2003 19/03/2003	7.7	<u> </u>	l	22	<0.5	<5		0.1					+
BW03 BW03	25/03/2003	7.6			A	<0.5	<5	<0.1						
BW03	01/04/2003	7.8			4	NV.U	~5	20.1		1	<u> </u>			1
BW03	03/04/2003	7.52					<2).4	1	1			
BW03	04/04/2003	7.52		0.5			<2		0.4 < 0.4		1.2	368		
TW11	05/02/1998	7.3		0.6			<5		5.2					
TW11	16/04/2002	7.6			16	<0.5								
TW11	22/04/2002	7.34		0.8			<1		0.4 <0.5	<0.5	1	236		
TW12	12/02/1998	8.2		<0.5			<5							
BW02	12/02/1998	8.1		<0.5			<5		6.4					
BW02 BW02	28/02/2003 04/03/2003	7.8						-					<10	
BW02 BW02	11/03/2003	7.7			3	<0.5	<5		0.3	-			<10	
BW02	19/03/2003	1.1				<0.5	<5		5.5					
BW02	25/03/2003	7.8			3	<0.5	<5	<0.1						
BW02	01/04/2003													
BW02	03/04/2003	7.58					<2	(0.6					
BW02	04/04/2003			0.9			<2		0.6 0	.4	1.4	374		
TW14	25/02/1999			1			6.5	5	7.4					
TW14A	16/04/2002	7.9	<u> </u>		374	<0.5	<u> </u>	<u> </u>		· · ·	·			+
TW14A	22/04/2002 16/04/2002	7.38		1.2	836	~ `	<1	1	3.9 1	.3 1.3	1.1	994		
TW15 TW15	16/04/2002 22/04/2002			1.2		0.1	/	+	1.2 < 0.5	<0.5	0.7	1600		+
TW15 TW16	16/04/2002			1.2	72	0.9		+	1.2 < 0.0	<0.0	0.7	1000		
TW16	22/04/2002			1.5		0	<1	1	10 0	.5 0.5	1.7	218		1
BH05	24/04/2007	8.2		1.0			31			0.0		210	İ	1
BH05	26/04/2007	8.1							79					
03A-P1	Nov-03										ļ	2285		1
03A-P1	May-05							<u> </u>						
03A-P1	Nov-05						-	-						
03A-P1	Jun-06						+	+	_					
03A-P1 03A-P1	Oct-06 May-07						+	+						+
03A-F I	May-07	0.84	+				+	+	-	+	+			+
M101P	Nov-03	7.41										1189		
M101P	May-05		1	1			1	1			1	1103		1
M101P	Nov-05							1		1	1			
M101P	Jun-06						1	1						
M101P	Oct-06	7.7										<u> </u>		
M101P	May-07	11.9												
MW3-P1	Nov-03	6.83										1299		
MW3-P1	May-05										_			
MW3-P1	Nov-05							<u> </u>						
MW3-P1	Jun-06						-	-						
MW3-P1	Oct-06									+	+			+
MW3-P1	May-07		+				+	+						
MW3-P1 MW3-P1	Apr-08 Sep-08						+	+						+
MW3-P1 MW3-P1	Apr-10						+	+			1			
111 14 3-17 1	Apr-10	/.83	1	1	I		1	1		1	I	1	1	<u> </u>

