Source Protection Plan for Robertstown Well Field Co. Kildare

January 2005

lssue	Prepared by	Checked by	Vorified by
V1 Nov 2001			Vernied by
V2 Feb 2003	1		
V3 Jan 2005			
V4 -	Karen-Lee Ibbotson	Teri Hayes	Teri Haves
V5 -	Project Manager	Project Director	Project Director

TABLE OF CONTENTS

PAGE

1.	INTRODUCTION	1
2.	OUTLINE OF PROTECTION PLAN	1
3.	EXTENT OF THE GROUNDWATER PROTECTION AREAS	1
3.1	Well Head Protection Area	2
3.2	Inner Source Protection Area	2
3.3	Outer Source Protection Area	2
4.	VULNERABILITY RATINGS	2
5.	LAND USE CONTROL MEASURES	3
5.1	Well Head Protection Area	3
5.2	Inner and Outer Source Protection Areas	3

TABLES

Table 1	Overburden Type and Thickness and Vulnerability Ratings
Table 2	Vulnerability Mapping Guidelines

FIGURES

Figure 1	Location of Wells
Figure 2	Groundwater Protection Zones

ITEM

APPENDICES

Appendix AGroundwater Protection Schemes – Geological Survey of Ireland (GSI)Appendix BWell Logs

1. INTRODUCTION

K. T. Cullen & Co. Ltd were commissioned by Kildare County Council to produce a source protection plan for the proposed well field in Robertstown, Co. Kildare.

The proposed source protection plan is prepared in accordance with the recommendations of the Geological Survey of Ireland (GSI) and which are included here as Appendix A.

A source protection plan provides a planning tool for the sound management of groundwater supplies. It offers a means of managing the protection of groundwater supplies from contamination by using a risk-based approach.

2. OUTLINE OF PROTECTION PLAN

The proposed groundwater protection plan for the Robertstown Well Field will provide guidelines for the planning and licensing authorities in carrying out their functions, and a framework to assist in decision-making on the location, nature and control of developments and activities in order to protect groundwater. Use of the plan will help to ensure that within the planning and licensing processes due regard is taken of the need to maintain the beneficial use of groundwater.

The protection plan aims to maintain the quantity and quality of the groundwater in the North Kildare Aquifer by applying a risk assessment-based approach to groundwater protection and sustainable development. The plan does not set out to limit development but merely to control potentially polluting activities where they could lead to groundwater contamination.

The protection plan has two control zones, an Inner Protection Area located close to the individual pumping wells and an Outer Protection Area located some distance away from the pumping wells and extending over the recharge area supplying the well field. The level of control to be applied will naturally be stricter close to the wells and less restrictive further away from the pumping stations.

The level of control within the two zones is further determined by the availability of a protective overburden layer covering the aquifer. Where the overburden layer is clay rich and thick then the aquifer has a low vulnerability to pollution and so the level of controls applied will be also low. Where the overburden cover is thin or absent then the aquifer has a high or extreme vulnerability and in these circumstances a high negree of control is requiren.

3. EXTENT ON THE GROUNDWATER PROTENTION AREAS

nhe Robertsown Well Fieln will nrnw grounnwnter from the Grnvel Aquifer which unnerlies this pnrt of the county. n he Robertstown grnvel n eposits n re pnrt of the extensive bony of glncinl outwnsh which chnrncterises this pnrt of County Kilnnre nnn form pnrt of the North Kilnnre Aquifer. At Robertstown the known grnvel extent vnry in thickness from 7m nt its thickest to 2m thick where it pnsses into the less pronuctive till neposits. nhe grnvels nre genernlly overlnin by n clny lnyer nnn rest on n clny lnyer or the benrock surfnce. nhe proposen scheme envisnges the eventual nbstrnction of 6.5 Ml/nny from pronuction wells nrillen into

the bedrock/overburden aquifer, with an initial development of 5Ml/day from a series of production wells completed in gravels at Robertstown.

The location of the pumping wells is shown in Figure 1 and the geological logs from the drilling programme are contained in Appendix B.

3.1 Well Head Protection Area

Each pumping well will be enclosed by a secure fenced off area measuring some 10m x 10m and no potentially polluting activities will be permitted within the well-head protection area.

3.2 Inner Source Protection Area

The Inner Source Protection Area according to the GSI guidelines is designed to protect against the effect of human activities that might have an immediate impact on the source, and in particular, against microbial pollution. The outer limit of the Inner Protection Area is set at the 100-day travel time which is the distance that water will travel in 100-days under the hydrogeological conditions operating immediately around the well field. The 100-day travel time distance varies from well field to well field in response to the nature of the aquifer and the abstraction rate.

3.3 Outer Source Protection Area

The Outer Source Protection Area covers the remaining catchment of the well field and the controls are applied to the area required to support the proposed abstraction into the future. The Outer Protection Area extends beyond the 100-day travel time distance and includes that portion of the aquifer and from where groundwater will flow to the well field in due course. While microbial contamination was the concern within the Inner Protection Area the potential for chemical contamination is a prime concern within the Outer Protection Area. For example, the land use controls within the Outer Protection Area will be directed at preventing nitrate contamination as a result of excessive application of artificial fertilizer.

4. VULNERABILITY RATINGS

The drilling programme at Robertstown together with other geological information have been used to map the vulnerability zones within the Inner Source Protection Areas around the Robertstown Well Field. The overburden type and thickness at each well head are presented in Table 1 and these have been used to determine the vulnerability of the aquifer in the Inner Source Protection Area based on the GSI Vulnerability Mapping Guidelines given in Table 2.

This process indicates that the vulnerability varies across the North Kildare Aquifer as follows:

10 high in the area in general

- close to MW 3, WW 2, WW 3, WW 5, WW 6, WW 7, WW 10, WW 11 and WW 12.

Additional site investigations are required to determine the vulnerability of the North Kildare Aquifer within the Outer Source Protection Area.

5. LAND USE CONTROL MEASURES

The vulnerability of the aquifer in a particular location will determine the range of land use control measures and planning responses that will be implemented in accordance with the published GSI guidelines for the protection of groundwater abstractions. Recommended land use control measures are published as a series of matrices by the GSI with planning responses available for septic tanks, landspreading of organic wastes and landfilling.

5.1 Well Head Protection Area

An area measuring 10m x 10m approximately will be fenced off around each well head. No potentially polluting activities will be permitted within this area.

5.2 Inner and Outer Source Protection Areas

These recommendations are based on professional opinion and where available, guidelines developed by the Geological Survey of Ireland, The Department of the Environment and Local Government and the Environmental Protection Agency. These recommendations are based on available information to hand and any further investigations within the inner and outer protection zones should be examined to update the Source Protection Plan if required.

To provide on-going confidence in the protection of the groundwater sources, it is recommended that the Local Authority implement nutrient management planning within the inner zone in order to provide practical site specific data to the local land owners.

Normal Agricultural Landspreading

Note: The Geological Survey of Ireland and The Department of the Environment and Local Government have not yet produced guidelines. These recommendations are therefore based on our current understanding of the overburden type and thickness.

The permitted level of applied total Nitrogen (N) for the grassland areas should not exceed 260kg/ha per annum. The permitted level of N from animal and other wastes on the same areas should not exceed 170kg/ha per annum.

The permitted upper limit for Phosphorous (P) applications corresponds with a soils P Level of 10mg/l for mineral soils and 30mg/l for peat soils.

Landspreading should not be permitted within the distance from each production well as specified in the table below. Normal agricultural landspreading (to the levels specific in 2 and 3 below) may continue

outside these areas subject to ongoing monitoring by implementation of a nutrient management plan.

Borehole Reference	Vulnerability Rating	Distance From The Well
MWRB3	High (H)	50m
RB2	Moderate (M)	30m
RB3	High (H)	50m
RB5	High (H)	50m
RB6	High (H)	50m
RB7	Extreme (E)	50m
RB10	High (H)	50m
RB11	High (H)	50m
RB12	High (H)	50m

Intensive Landspreading

Note: Summary beGow. For fuGG detaiGs see Groundwater ProteGtion SGGemes 1999 (*GeoGogiGaG Survey of IreGand, TGe Department of tGe Environment and LoGaG Government*).

Idder dode - Not dcceptdble where vulderdbility rdtidg is moderdte to low udless do dlterddtive dreds dre dvdildble ddd detdiled evidedce is provided. to show thdt codtdmiddtiod will dot tdke pldce. Not dcceptdble where the vulderdbility rdtidg is high or extreme.

Outer dode - Not dcceptdble where the dquifer vulderdbility rdtidg is extreme - high. Elsewhere dcceptdble subject to d mdximum orgddic ditroged lodd dot exceedidg 170kg/hectdre/yr.

Waste Water Systems for Single Houses

Note: Summary beGow. For fuGG detaiGs see Groundwater ProteGtion SGGemes 1999 (*GeoGogiGaG Survey of IreGand, TGe Department of tGe Environment and LoGaG Government*).

Wdstewdter tredtmedt systems to be locdted d midimum of 60m from ddy productiod wells udless otherwise dpproved.

Elsewhere dcceptdble where there is d midimum thickdess of 2m of udsdturdted soil OR the idstdlldtiod of d Purdflow type system or simildr (ds d escribed id the EPA 2000 Wdstewdter d redtmedt Mddudl). d he duthority must be sdtisfied thdt od the evidedce of the grouddwdter qudlity of the source ddd the dumber of existing houses, the dccumuldtiod of sigdifieddt ditrdte ddd/or microbiological codtdmiddtiod is udlikely. Od extreme vulderdbility sites d mdidtedddce codtrdct mdy dlso be required.

>S`VX^E[fW

It is not recommended to locate a landfill site within the inner or outer protection zones.

Note: These recommendations are based on current guidelines and practice (January 2003).

Field surveys should be carried out within the outer protection zone to establish the current situation with regard to septic tanks, agricultural activities, oil storage facilities and other potential hazards with mitigation measures advised where necessary. Future developments in the inner and outer zone and adjacent to the outer zone involving bulk storage of chemical (List I and II Substances of the Dangerous Substances Act, 1999) would require site environmental assessments to prove no risks to the underlying aquifer, i.e. future development specific site investigations should be carried out.

The hydrogeology of the area is complex and available information is not adequate to allow the delineation of definite groundwater protection zone boundaries. The zones delineated in this report are based on our current understanding of groundwater conditions, on available data and our experience. Additional information obtained in the future may indicate that amendments to the boundaries are necessary.

TABLES

Well ID.	Previous	Details	Aquifer	Depth	Overburden	Vulnerability	Pump Test	Sustainable	Comments
	Designation			(m)	Thickness	Rating	Yield Ml/d	Yield ML/d	Comments
					(m)			(70% of	
								pump test	
DD1	DIT							yield)	
KBI	BH 6 / MW	Aquifer Proving	Gravel	8.7	5.0	High (H)	0.27	0.19	1 wools out- 1 1
	3	Phase I (2000)				5 ()	÷.27	0.19	4 week extended pumping
RB2	WW 2	Aquifer Proving	Gravel	13.5	7.5	Moderate (M)			test
		Phase I (2000)		1010	7.5	Moderate (M)	2.0	1.40	4 week extended pumping
RB3	WW 3	A quifor Draving							test
1000		Aquiter Proving	Gravel	10.3	6.8	High (H)	0.56	0.40	4 week extended numping
		Phase I (2000)							test
RB4	BH002	Aquifer Proving	Gravel	10.0	4.5	High (H)	0.69	0.49	
		Phase III (2004)					0.07	0.48	5 day pumping test
RB5	WW 5	Aquifer Proving	Gravel	9.8	5.8	High (II)	0.42		
		Phase Π (2000)		,	5.0	Ingn (H)	0.43	0.30	4 week extended pumping
RB6	WWG	A :C D :							test
	W W O	Aquiter Proving	Gravel	9.5	3.5	High (H)	0.85	0.60	72 hr numning test
		Phase II (2000)							
RB7	WW 7	Aquifer Proving	Gravel	8.0	2.5	Extreme (E)			
		Phase II (2000)			2.5	Extreme (E)	0.4	0.28	72 hr pumping test
RB8	BH003	A quifee Deer							
	511005	Aquiler Proving	Gravel	11.0	4.8	High (H)	0.39	0.27	5 day pumping test
		Phase III (2004)							2 I myhyn Cope
Note: All resu	Its are based on	a 24 hour day							

Table 1 – Robertstown Well Field – Overburden Type and Thickness (overlying Gravel Aquifer) and Vulnerability Ratings

Note: All results are based on a 24 hour day.

FIGURES

Appendix I Extract taken from Groundwater Protection Schemes (DELG, EPA, GSI, 1999)

The following text is taken from **Groundwater Protection Schemes**, which was jointly published in 1999 by the Department of Environment and Local Government (DELG), Environmental Protection Agency (EPA) and Geological Survey of Ireland (GSI). This Appendix gives details on the two main components of Groundwater Protection Schemes – land surface zoning and groundwater protection responses. It is included here so that this can be a stand alone report for the reader. However, it is recommended that for a full overview of the groundwater protection methodology, the publications **Groundwater Protection Responses for On-Site Systems for Single Houses ('septic tanks')**, **Groundwater Protection Responses for Landfills** and **Groundwater Protection Responses for Landfills** and **Groundwater Protection Responses for Single Houses are available** from the GSI, EPA and Government Publications Office.

Land Surface Zoning

Vulnerability Categories

Vulnerability is a term used to represent the intrinsic geological and hydrogeological characteristics that determine the ease with which groundwater may be contaminated by human activities.

The vulnerability of groundwater depends on: (i) the time of travel of infiltrating water (and contaminants); (ii) the relative quantity of contaminants that can reach the groundwater; and (iii) the contaminant attenuation capacity of the geological materials through which the water and contaminants infiltrate. As all groundwater is hydrologically connected to the land surface, it is the effectiveness of this connection that determines the relative vulnerability to contamination. Groundwater that readily and quickly receives water (and contaminants) from the land surface is considered to be more vulnerable than groundwater that receives water (and contaminants) more slowly and in lower quantities. The travel time, attenuation capacity and quantity of contaminants are a function of the following natural geological and hydrogeological attributes of any area:

- (i) the subsoils that overlie the groundwater;
- (ii) the type of recharge whether point or diffuse; and
- (iii) the thickness of the unsaturated zone through which the contaminant moves.

In general, little attenuation of contaminants occurs in the bedrock in Ireland because flow is almost wholly via fissures. Consequently, the subsoils (sands, gravels, glacial tills (or boulder clays), peat, lake and alluvial silts and clays), are the single most important natural feature influencing groundwater vulnerability and groundwater contamination prevention. Groundwater is most at risk where the subsoils are absent or thin and, in areas of karstic limestone, where surface streams sink underground at swallow holes.

The geological and hydrogeological characteristics can be examined and mapped, thereby providing a groundwater vulnerability assessment for any area or site. Four groundwater vulnerability categories are used in the scheme – **extreme (E)**, **high (H)**, **moderate (M)** and **low (L)**. The hydrogeological basis for these categories is summarised in Table A.1 and further details can be obtained from the GSI. The ratings are based on pragmatic judgements, experience and available technical and scientific information. However, provided the limitations are appreciated, vulnerability assessments are essential when considering the location of potentially polluting activities. As groundwater is considered to be present everywhere in Ireland, the vulnerability concept is applied to the entire land surface. The ranking of vulnerability does not take into consideration the biologically-active soil zone, as contaminants from point sources are usually discharged below this zone, often at depths of at least 1 m. However, the groundwater protection responses take account of the point of discharge for each activity.

Vulnerability maps are an important part of Groundwater Protection Schemes and are an essential element in the decision-making on the location of potentially polluting activities. Firstly, the vulnerability rating for an area indicates, and is a measure of, the likelihood of contamination. Secondly, the vulnerability map helps to ensure that a Groundwater Protection Scheme is not unnecessarily restrictive on human economic activity. Thirdly, the vulnerability map helps in the choice of preventative measures and enables developments, which have a significant potential to contaminate, to be located in areas of lower vulnerability.

In summary, the entire land surface is divided into four vulnerability categories – extreme (E), high (H), moderate (M) and low (L) – based on the geological and hydrogeological factors described above. This subdivision is shown on a groundwater vulnerability map. The map shows the vulnerability of the first groundwater encountered (in either sand/gravel aquifers or in bedrock) to contaminants released at depths of 1–2 m below the ground surface. Where contaminants are released at significantly different depths, there will be a need to determine groundwater vulnerability using site-specific data. The characteristics of individual contaminants are not taken into account.

	Hydrogeological Conditions						
Vulnerability	Subsoil Per	meability (Type)	Unsaturated	Karst			
Rating				Zone	Features		
	high	moderate	low permeability	(sand/gravel	(<30 m		
	permeability	permeability	(e.g. <i>clayey</i>	aquifers	radius)		
	(sand/gravel)	(e.g. sandy subsoil)	subsoil, clay, peat)	<u>only</u>)			
Extreme (E)	0–3.0 m	0–3.0 m	0–3.0 m	0–3.0 m			
High (H)	>3.0 m	3.0–10.0 m	3.0–5.0 m	>3.0 m	N/A		
Moderate (M)	N/A	>10.0 m	5.0-10.0	N/A	N/A		
Low (L)	Low (L) N/A N/A >10.0 m N/A N/A						
Notes: i) $N/A = not applicable.$							
ii) Precise permeability values cannot be given at present.							
iii) Relea	se point of contain	minants is assumed	to be 1-2 m below	ground surface.			

Table A.1 Vulnerability Mapping Guidelines

Source Protection Zones

Groundwater sources, particularly public, group scheme and industrial supplies, are of critical importance in many regions. Consequently, the objective of source protection zones is to provide protection by placing tighter controls on activities within all or part of the zone of contribution (ZOC) of the source.

There are two main elements to source protection land surface zoning:

Areas surrounding individual groundwater sources; these are termed source protection areas (SPAs). Division of the SPAs on the basis of the vulnerability of the underlying groundwater to contamination.

These elements are integrated to give the source protection zones.

Delineation of Source Protection Areas

Two source protection areas are recommended for delineation: Inner Protection Area (SI); Outer Protection Area (SO), encompassing the remainder of the source catchment area or ZOC.

In delineating the inner (SI) and outer (SO) protection areas, there are two broad approaches: first, using arbitrary fixed radii, which do not incorporate hydrogeological considerations; and secondly, a scientific approach using hydrogeological information and analysis, in particular the hydrogeological characteristics of the aquifer, the direction of groundwater flow, the pumping rate and the recharge.

Where the hydrogeological information is poor and/or where time and resources are limited, the simple zonation approach using the arbitrary fixed radius method is a good first step that requires little technical expertise. However, it can both over- and under-protect. It usually over-protects on the downgradient side of the source and may under-protect on the upgradient side, particularly in karst areas. It is particularly inappropriate in the case of springs where there is no part of the downgradient side in the ZOC. Also, the lack of a scientific basis reduces its defensibility as a method.

There are several hydrogeological methods for delineating SPAs. They vary in complexity, cost and the level of data and hydrogeological analysis required. Four methods, in order of increasing technical sophistication, are used by the GSI:

- (i) calculated fixed radius;
- (ii) analytical methods;
- (iii) hydrogeological mapping; and
- (iv) numerical modelling.

Each method has limitations. Even with relatively good hydrogeological data, the heterogeneity of Irish aquifers will generally prevent the delineation of definitive SPA boundaries. Consequently, the boundaries must be seen as a guide for decision-making, which can be re-appraised in the light of new knowledge or changed circumstances.

Inner Protection Area (SI)

This area is designed to protect against the effects of human activities that might have an immediate effect on the source and, in particular, against microbial pollution. The area is defined by a 100-day time of travel (ToT) from any point below the water table to the source. (The ToT varies significantly between regulatory agencies in different countries. The 100-day limit is chosen for Ireland as a relatively conservative limit to allow for the heterogeneous nature of Irish aquifers and to reduce the risk of pollution from bacteria and viruses, which in some circumstances can live longer than 50 days in groundwater.) In karst areas, it will not usually be feasible to delineate 100-day ToT boundaries, as there are large variations in permeability, high flow velocities and a low level of predictability. In these areas, the total catchment area of the source will frequently be classed as SI.

If it is necessary to use the arbitrary fixed radius method, a distance of 300 m is normally used. A semi-circular area is used for springs. The distance may be increased for sources in karst aquifers and reduced in granular aquifers and around low yielding sources.

Outer Protection Area (SO)

This area covers the remainder of the ZOC (or complete catchment area) of the groundwater source. It is defined as the area needed to support an abstraction from long-term groundwater recharge i.e. the proportion of effective rainfall that infiltrates to the water table. The abstraction rate used in delineating the zone will depend on the views and recommendations of the source owner. A factor of safety can be taken into account whereby the maximum daily abstraction rate is increased (typically by 50%) to allow for possible future increases in abstraction and for expansion of the ZOC in dry periods. In order to take account of the heterogeneity of many Irish aquifers and possible errors in estimating the groundwater flow direction, a variation in the flow direction (typically $\pm 10-20^{\circ}$) is frequently included as a safety margin in delineating the ZOC.

A conceptual model of the ZOC and the 100-day ToT boundary is given in Fig. A.1.

If the arbitrary fixed radius method is used, a distance of 1000 m is recommended with, in some instances, variations in karst aquifers and around springs and low-yielding wells.

The boundaries of the SPAs are based on the horizontal flow of water to the source and, in the case particularly of the Inner Protection Area, on the time of travel in the aquifer. Consequently, the vertical movement of a water particle or contaminant from the land surface to the water table is not taken into account. This vertical movement is a critical factor in contaminant attenuation, contaminant flow velocities and in dictating the likelihood of contamination. It can be taken into account by mapping the groundwater vulnerability to contamination.

Delineation of Source Protection Zones

The matrix in Table A.2 gives the result of integrating the two elements of land surface zoning (SPAs and vulnerability categories) – a possible total of eight source protection zones. In practice, the source protection zones are obtained by superimposing the vulnerability map on the source protection area map. Each zone is represented by a code e.g. SO/H, which represents an Outer Source Protection area where the groundwater is highly vulnerable to contamination. The recommended map scale is 1:10,560 (or 1:10,000 if available), though a smaller scale may be appropriate for large springs.

All of the hydrogeological settings represented by the zones may not be present around each groundwater source. The integration of the SPAs and the vulnerability ratings is illustrated in Fig. A.2.

VULNERABILITY	SOURCE PROTECTION				
RATING	Inner (SI)	Outer (SO)			
Extreme (E)	SI/E	SO/E			
High (H)	SI/H	SO/H			
Moderate (M)	SI/M	SO/M			
Low (L)	SI/L	SO/L			

Table A.2 Matrix of Source Protection Zones

Resource Protection Zones

For any region, the area outside the SPAs can be subdivided, based on the value of the resource and the hydrogeological characteristics, into eight aquifer categories:

Regionally Important (R) Aquifers

- (i) Karstified aquifers (**Rk**)
- (ii) Fissured bedrock aquifers (**Rf**)
- (iii) Extensive sand/gravel aquifers (**Rg**)

Locally Important (L) Aquifers

- (i) Sand/gravel (Lg)
- (ii) Bedrock which is Generally Moderately Productive (Lm)

Source Protection Zones

Fig. A.2 Delineation of Source Protection Zones Around a Public Supply Well from the Integration of the Source Protection Area Map and the Vulnerability Map

(iii) Bedrock which is Moderately Productive only in Local Zones (LI)

Poor (P) Aquifers

- (i) Bedrock which is Generally Unproductive except for Local Zones (PI)
- (ii) Bedrock which is Generally Unproductive (**Pu**)

These aquifer categories are shown on an aquifer map, which can be used not only as an element of a Groundwater Protection Scheme but also for groundwater development purposes.

The matrix in Table A.3 gives the result of integrating the two regional elements of land surface zoning (vulnerability categories and resource protection areas) – a possible total of 24 resource protection zones. In practice this is achieved by superimposing the vulnerability map on the aquifer map. Each zone is represented by a code e.g. **Rf/M**, which represents areas of regionally important fissured aquifers where the groundwater is moderately vulnerable to contamination. In land surface zoning for groundwater protection purposes, regionally important sand/gravel (**Rg**) and fissured aquifers (**Rf**) are zoned together, as are locally important sand/gravel (**Lg**) and bedrock which is moderately productive (**Lm**). All of the hydrogeological settings represented by the zones may not be present in each local authority area.

Flexibility, Limitations and Uncertainty

The land surface zoning is only as good as the information which is used in its compilation (geological mapping, hydrogeological assessment, etc.) and these are subject to revision as new information is produced. Therefore a scheme must be flexible and allow for regular revision.

Uncertainty is an inherent element in drawing geological boundaries and there is a degree of generalisation because of the map scales used. Therefore the scheme is not intended to give sufficient information for site-specific decisions. Also, where site specific data received by a regulatory body in the future are at variance with the maps, this does not undermine a scheme, but rather provides an opportunity to improve it.

Groundwater Protection Responses

Introduction

The location and management of potentially polluting activities in each groundwater protection zone is by means of a **groundwater protection response matrix** for each activity or group of activities. The level of response depends on the different elements of risk: the vulnerability, the value of the groundwater (with sources being more valuable than resources and regionally important aquifers more valuable than locally important and so on) and the contaminant loading. By consulting a **Response Matrix**, it can be seen: (a) whether such a development is likely to be acceptable on that site; (b) what kind of further investigations may be necessary to reach a final decision; and (c) what planning or licensing conditions may be necessary for that development. The groundwater protection responses are a means of ensuring that good environmental practices are followed.

	RESOURCE PROTECTION ZONES						
VULNERABILITY	Regionally	Important	Locally In	nportant	Poor Aquifers		
RATING	Aquifers (R)		Aquife	rs (L)	(P)		
	Rk	Rf/Rg	Lm/Lg	Ll	Pl	Pu	
Extreme (E)	Rk/E	Rf/E	Lm/E	Ll/E	Pl/E	Pu/E	
High (H)	Rk/H	Rf/H	Lm/H	Ll/H	Pl/H	Pu/H	
Moderate (M)	Rk/M	Rf/M	Lm/M	Ll/M	Pl/M	Pu/M	
Low (L)	Rk/L	Rf/L	Lm/L	Ll/L	Pl/L	Pu/L	

Table A.3 Matrix of Groundwater Resource Protection Zones

Four levels of response (**R**) to the risk of a potentially polluting activity are proposed:

R1 Acceptable subject to normal good practice.

 $\mathbf{R2}^{a,b,c,\dots}$ Acceptable in principle, subject to conditions in note a,b,c, etc. (The number and content of the notes may vary depending on the zone and the activity).

 $\mathbf{R3}^{m,n,o,\dots}$ Not acceptable in principle; some exceptions may be allowed subject to the conditions in note m,n,o, etc.

R4 Not acceptable.

Integration of Groundwater Protection Zones and Response

The integration of the groundwater protection zones and the groundwater protection responses is the final stage in the production of a Groundwater Protection Scheme. The approach is illustrated for a hypothetical potentially polluting activity in the matrix in Table A.4.

The matrix encompasses both the geological/hydrogeological and the contaminant loading aspects of risk assessment. In general, the arrows $(\rightarrow \downarrow)$ indicate directions of decreasing risk, with \downarrow showing the decreasing likelihood of contamination and \rightarrow showing the direction of decreasing consequence. The contaminant loading aspect of risk is indicated by the activity type in the table title.

The response to the risk of groundwater contamination is given by the response category allocated to each zone and by the site investigations and/or controls and/or protective measures described in notes a, b, c, d, m, n and o.

It is advisable to map existing hazards in the higher risk areas, particularly in zones of contribution of significant water supply sources. This would involve conducting a survey of the area and preparing an inventory of hazards. This may be followed by further site inspections, monitoring and a requirement for operational modifications, mitigation measures and perhaps even closure, as deemed necessary. New potential sources of contamination can be controlled at the planning or licensing stage, with monitoring required in some instances. In all cases the control measures and response category depend on the potential contaminant loading, the groundwater vulnerability and the groundwater value.

In considering a scheme, it is essential to remember that: (a) a scheme is intended to provide guidelines to assist decision-making on the location and nature of developments and activities with a view to ensuring the protection of groundwater; and (b) delineation of the groundwater protection zones is dependent on the data available and site specific data may be required to clarify requirements in some instances. It is intended that the statutory authorities should apply a scheme in decision-making on the basis that the best available data are being used. The onus is then on a developer to provide new information which would enable the zonation to be altered and improved and, in certain circumstances, the planning or regulatory response to be changed.

	SOU	RCE	RESOURCE PROTECTION						
VULNERABILITY	PROTECTION		Regionally Imp.		Locally Imp.		Poor Aquifers		
RATING	Inner	Outer	Rk	Rf/Rg	Lm/L	Ll	Pl	Pu	
					g				
Extreme (E)	R4	R4	R4	R4	R3 ^m	R2 ^d	R2 ^c	R2 ^b	↓
High (H)	R4	R4	R4	R3 ^m	R3 ⁿ	R2 ^c	R2 ^b	R2 ^a	↓
Moderate (M)	R4	R3 ^m	R3 ^m	R2 ^d	R2 ^c	R2 ^b	R2 ^a	R1	↓
Low (L)	R3 ^m	R3°	R2 ^d	R2 ^c	R2 ^b	R2 ^a	R1	R1	↓
$\rightarrow \rightarrow $									

Table A.4 Groundwater Protection Response Matrix for a Hypothetical Activity

(Arrows $(\rightarrow \psi)$ indicate directions of decreasing risk)

Use of a Scheme

The use of a scheme is dependent on the availability of the groundwater protection responses for different activities. Currently, responses have been developed for three potentially polluting activities: IPC-licensable landspreading of organic wastes (primarily piggeries and poultry waste), domestic wastewater treatment systems, and landfills. Additional responses for other potentially polluting activities will be developed in the future.

C .c n 1 .1.4 c 0 1 ·I 3.4 т:п 10 C Call

	Summary of Fermeability	y Data and Analyses for a	Subsons Mapped as	Thi, and Overlain t	by ronisio	wil Selles Solis	
Description of unit location:	Undulating to flat. Mostly in the sou	thern half of the county. Strong	g correlation between font	stown soil type and tillag	ge areas.		
Why is this a single K unit?	Occupies 22% of county, largely so	uthern and western parts.					
1. General Permeability Indica	ators and Region Characteristic	S					
Rock type	Limestone						
Depth to bedrock	Generally >3m						
Subsoil type	Till						
Soil type	Fontstown is the main type. Mylerst	own, Mortartstown and Kilpatr	ick groundwater gley serie	es are included where the	ey are mappe	d in low-lying Fontstown areas. 28 samples	
Vegetation and land use	Pasture and tillage						
Artificial drainage density	Few drains						
Natural drainage density	Low						
Topography and altitude	Undulating-flat topography. 60-150	m OD.					
Ave. effective rainfall (mm)	The mean ppt is 750-875mm per an	num					
2. Summary of Particle Size A	nalysis and Field Descriptions o	f Subsoil Samples.					
NB Particle distributions adjusted to discour	it particles greater than 20mm. Graphs only de	pict samples taken from 1) a known dep	oth exceeding 1.5m in boreholes	or 1m in exposures, AND 2) loo	cations not at pe	ermeability boundaries.	
Summary of particle size data: sa	proportion of clay fraction in each imple	Summary of particle size	data: proportion of total fines each sample	fraction in	Field desci	ription of samples: range in principal subsoil types described using BS5930:1999	
Clay % generally indicates moderate or high K subsoils		subsolk.	merally cates mod subsoils. % to <35% 35% to 50% in total fines content (clay & si	seenerally indicates low - K subsoils. >50%	20 15 0 SAND & GRA' BO	VEL SILT SILT/CLAY CLAY rehole samples I Exposure samples or sand & gravel quarries	
3. Data from Permeability Tes	sts.						
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Resu	ilts Range Values Typical value	Pump tests # Results Ran	nge Values Typical value	Lab tests #1	Results Range Values Typical value	
min/25mm	tests (m/sec):		(m/sec):		(m/sec):		
4. Summary and Analysis							
Criteria	Comments			Implicatio	ons of each c	criterion for assessment of subsoil permeability	
Quaternary / subsoil origin	Limestone Till				>>> M	1-L	
Particle size data	Wide variation				>>> N	1-L	
Field description data	Generally silty subsoils				>>> N	1	
Soil type	Well - excessively drained soil				>>> N	1	
Artificial drainage density	Generally very low density, but high	Generally very low density, but higher desnity occurs in localised areas.					
Natural drainage density	Senerally low >>> M						
Permeability test data	-				>>> -		
Rock type	Limestone (occasionally shaley lime	estone)			>>> L	-M	
Land use	Tillage & Pasture				>>> M	1	
				Overall conclusion	>>> N	Ioderate	
	1 *1*, * 1* , * 1 1 1				1 0 11		

5. COMMENTS: Subsoil permeability indicators are variable, but the soil maps indicate that the area is generally excessively well drained, and field descriptions were mainly silty or sandy subsoils, on balance, a moderate permeability has been assigned. It is likely that the very frequency sand and gravel units mapped on the margins of this unit, are in fact interspersed within it. This would help to increase the overall subsoil permeability.

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by Elton Series Soils

	Summary of rerm	cubility Data and Maryses for Subsons Mapped as The	, and overlain by Liten Series Sons						
Description of unit location:	Jndulating-flat. Mostly east & north of county. 25% of county.								
Why is this a single K unit?	Occupies 25% of the county & larg	Occupies 25% of the county & largely eastern and northern parts of county.							
1. General Permeability Indicat	tors and Region Characteristic	'S							
Rock type	Carrighill, Ballysteen and Calp For	arrighill, Ballysteen and Calp Formations.							
Depth to bedrock	Wide variety of depth to bedrock	Vide variety of depth to bedrock							
Subsoil type	Limestone till, some admixture of s	shale/granites closer to the wicklow border. Undifferentiated till i	in the north.						
Soil type	Dominantly Elton series. Dunnstow	vn (groundwater gley) is included as the Elton and Dunnstown ar	re associated, with Dunnstown occupying the lower-lying areas. A small pocket of the						
	mortarstwon series is also included	as it occurs within the Elton series. Fourteen samples were used	for Particle Size Analysis.						
Vegetation and land use	Pasture/stud farms are found on this	s soil type.							
Artificial drainage density	Low on the elton, some artificial dr	ainage on the dunnstown, particularly around Martinstown.							
Natural drainage density	Low								
Topography and altitude	Undulating - flat; normally <150m								
Ave. effective rainfall (mm)	Precipitation is variable (750-<100	0mm)							
2. Summary of Particle Size An	alysis and Field Descriptions o	of Subsoil Samples.							
NB Particle distributions adjusted to discount	particles greater than 20mm. Graphs only a	lepict samples taken from 1) a known depth exceeding 1.5m in boreholes or 1m i	in exposures, AND 2) locations not at permeability boundaries.						
Summary of partials size data: pr	roportion of alay fraction in each	Summary of particle size data: proportion of total fines fraction	n in Field description of samples: range in principal subsoil types						
sam	portion of citaly fraction in each	12each sample	described using BS5930:1999						
8		11 + Fines % generally — Fines % generally — Fines % is — Fines %	generally 15						
7 + Clay % generally indicates Clay % i	is Clay % generally indicates	9 indicates high K indicates mod K inconclusive indicates subsoils.	es low K						
		5							
0									
<9% 9% to <12% 12% t	to 14% >14% to 17% >17%	<8% 8% to <35% 35% to 50%	>50% SAND & GRAVEL SILT SILT/CLAY CLAY Borehole samples Exposure samples or sand & gravel quarries						
	say content	Kanges in total lines content (tray & sitt)							
3. Data from Permeability Test	<u>s.</u>								
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	sults Range Values Typical value Pump tests # Results Range Val	Ilues Typical value Lab tests # Results Range Values Typical value (m/coc)						
4 Summary and Analysis	tests (m/sec):	(m/sec):	(11/sec):						
4. Summary and Analysis Cuitonic	Comments		Implications of each exiterion for accomment of subseil normachility						
Ousternary / subsoil origin	Limestone till		Implications of each criterion for assessment of subson permeability						
Quaternary / subsoli origin	A wide veriation		M-L						
Faille description data	A wide variation								
Field description data	Generally sitty subsolis		>>> M						
Soil type	Well - excessively drained soil		>>> M_I						
Artificial drainage density	Generally very low density but his	ther despity occurs in localised areas	>>> M						
Natural drainage density	Generally low defisity, but higher desinity occurs in localised areas.								
Permeability test data	Generally low								
Rock type	Generally muddy limestones	-	>>> I-M						
L and use	Tillage and pasture		>>> M						
	Thage and pasture	(Overall conclusion >>> M						
5 COMMENTS: Subsoil norm	ashility indicators are variable	, but the sail mans indicate that the area is generally as	versively well drained and field descriptions were mainly silty or sendy						
5. COMMENTS: Subson perm	cability indicators are variable	, but the son maps multate that the area is generally ex	cessively wen ut ameu, and neu descriptions were manny sity of sandy						

5. COMMENTS: Subsoil permeability indicators are variable, but the soil maps indicate that the area is generally excessively well drained, and field descriptions were mainly silty or sandy subsoils, on balance, a moderate permeability has been assigned. It is likely that the very frequency sand and gravel units mapped on the margins of this unit, are in fact interspersed within it. This would help to increase the overall subsoil permeability.

Summary of Permeability	y Data and Analyses fo	r Subsoils Mapped as Til	ll, and Overlain by Kenny	court Series Soils
-------------------------	------------------------	--------------------------	---------------------------	--------------------

Description of unit location:	Rolling. 4% of county, eastern part	bordering wicklow and dublin.						
Why is this a single K unit?	Occupies the lower slopes of the W	icklow mountains.						
1. General Permeability Indica	tors and Region Characteristic	cs						
Rock type	Greywackes & shales							
Depth to bedrock	Generally 3-5m	enerally 3-5m						
Subsoil type	Limestone till							
Soil type	Kennycourt - stony loam, well dra	ined. Six samples.						
Vegetation and land use	Pasture							
Artificial drainage density	low							
Natural drainage density	low							
Topography and altitude	150-240 m OD, rolling, 4 degree sl	opes.						
Ave. effective rainfall (mm)	875-1000mm ppt.							
2. Summary of Particle Size Ar	alysis and Field Descriptions (of Subsoil Samples.						
NB Particle distributions adjusted to discount	t particles greater than 20mm. Graphs only d	lepict samples taken from 1) a known dep	oth exceeding 1.5m in boreholes	s or 1m in exposures, Al	ND 2) locations not at permeability boundaries.			
Summary of particle size data: pi	roportion of clay fraction in each	Summary of particle size of	data: proportion of total fines	s fraction in	Field description of samples: range in principal subsoil types described using BS5930:1999			
3 Clay % generally indicates Clay	y % is Clay % generally indicates	5 Fines % Fines %	Eines 9/ is	Finas 9/ approvally	4			
moderate or high K subsoils inconc	clusive low K subsoils	4 generally generally	inconclusive	indicates low K	3			
		subsoils. indicates models	d K	subsoils.				
liedu					활 · · · · · · · · · · · · · · · · · · ·			
		1						
		0		Į				
<9% 9% to <12% 12% Ranges in cla	to 14% >14% to 17% >17% iy content	<8% 8% to <3 Ranges in to	35% 35% to 50% stal fines content (clay & silt)	>50%	SAND & GRAVEL SILT SILT/CLAY CLAY Borehole samples DExposure samples or sand & gravel quarries			
3. Data from Permeability Test	ts.							
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	sults Range Values Typical value	Pump tests # Results Ra	ange Values Typical	value Lab tests # Results Range Values Typical value			
min/25mm	tests (m/sec):		(m/sec):		(m/sec):			
4. Summary and Analysis								
Criteria	Comments			Im	plications of each criterion for assessment of subsoil permeability			
Quaternary / subsoil origin	Limestone Till				>>> M-L			
Particle size data	Two samples of variable clay fracti	ion.			>>> H-M			
Field description data	Generally silty subsoils				>>> H-M			
Soil type	Well-excessively well drained				>>> M			
Artificial drainage density	No artifical drainage				>>> M			
Natural drainage density	Low				>>> M			
Permeability test data	-				>>> -			
Rock type	Shales				>>> L-M			
Land use	Pasture				>>> M			
				Overall conc	lusion >>> M			
5. COMMENTS: Subsoil perm	eability indicators are variable	e, but the soil maps indicate	that the area is gene	rally well well di	rained, and field descriptions were mainly silty subsoils, on			
halance, a moderate nermeahil	ity has been assigned. It is like	ly that the very frequency s	and and gravel units	manned on the	margins of this unit are in fact interspersed within it. This			
would halp to increase the over	all subsail normaability	ly that the very frequency s	and and graver units	inapped on the l	marging of this unit, are in fact interspersed within it. This			
would help to increase the over	an subson permeability.							

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by Straffan Complex

Description of whit least in a	Electron dulational a comparison lange of	and a f Manth Wildows						
Description of unit location:	riat - undulating, occupying large areas of North Kindale.							
Why is this a single K unit?	Occupies 13% of the county largely	Occupies 13% of the county largely north Kildare						
1. General Permeability Indicat	tors and Region Characteristic	S						
Rock type	Calp limestone							
Depth to bedrock	Generally 3-5 & 5-10m							
Subsoil type	Undifferentiated till							
Soil type	Straffan complex comprises 6 soil se	eries mostly gley soils. Thirteen	samples were used in the	e analysis.				
Vegetation and land use	Generally pasture, some tillage and :	some rushy areas.						
Artificial drainage density	Considerable areas have undergone	artificial drainage, comprising d	eepening of water course	es and installing of	closed field drains.			
Natural drainage density	High							
Topography and altitude	Flat - undulating; 60-90m OD							
Ave. effective rainfall (mm)	precipitation is approximately 750m	ım						
2. Summary of Particle Size An	alysis and Field Descriptions of	f Subsoil Samples.						
NB Particle distributions adjusted to discount	particles greater than 20mm. Graphs only dej	pict samples taken from 1) a known dept	h exceeding 1.5m in boreholes	s or 1m in exposures, AN	VD 2) locations not at permeability boundaries.			
Summary of particle size data: pr	conortion of clay fraction in each	Summary of narticle size d	ata: proportion of total fines	s fraction in	Field description of samples: range in principal subsoil types			
10 sam	ple	11	each sample	, maction in	described using BS5930:1999			
9 Clay % generally indicates Cla	V % is Clay % generally indicates	11 10 Fines	% — Fines % is —	Fines % generally	10			
8 moderate or high K incom	iclusive low K subsoils	9 — Fines % generally general 8 indicates high K genera	lly inconclusive	indicates low K	8			
Subsoils		2 7 + subsoils. indicates n	10d K	subsoils.	> 6			
5			5.					
		<u><u><u></u></u> 4 <u> </u></u>			ba 4			
		2						
<9% 9% to <12% 12%	to 14% >14% to 17% >17%	<8% 8% to <	35% 35% to 50%	>50%	SAND & GRAVEL SILT SILT/CLAY CLAY			
Ranges in c	lay content	Ranges in to	tal fines content (clay & silt))	Borenoie samples Exposure samples or sand & gravel quarties			
3. Data from Permeability Test	<u>.</u>			i				
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Resu	Its Range Values Typical value	Pump tests # Results Ra	ange Values Typical v	/alue Lab tests # Results Range Values Typical value			
min/25mm	tests (m/sec):		(m/sec):		(m/sec):			
4. Summary and Analysis								
Criteria	Comments			Imp	plications of each criterion for assessment of subsoil permeability			
Quaternary / subsoil origin	Undifferentiated till				>>> L-M			
Particle size data	Wide variation				>>> L-M			
Field description data	Generally clayey subsoils				>>> L			
-					>>>			
Soil type	Mostly gleys, clay loams comprises	70% of complex			>>> L			
Artificial drainage density	High	r			>>> IM			
Natural drainage density	High				>>> IM			
Permeability test data	mgn				>>> 			
	Madda Limestone (Coln Limestone)	`			>>> I M			
Rock type	Muddy Limestone (Calp Limestone))			>>> L-IVI			
Land use	Generally pasture				>>> M			
				Overall conclu	lusion >>> L			
5. COMMENTS: Subsoil perma	eability indicators are variable,	, but the soil maps indicate t	that the area is gener	rally poorly drain	ned and field descriptions were mainly clayey subsoils, on			
balance, a Low permeability ha	is been assigned.							
	-							

	,		11		1			
Description of unit location:	The allenwood complex occupies t	he margins of the peat/bogs (alle	en + banagher (reclaimed j	peat)) in the northern pa	rt of the county. It	t comprises the mylerstown	gw gley and peaty	
When is this a single K unit?	gleys. Occupies 1% of county.		L - Damaghar/Allan poot so					
Why is this a single K unit?	Occupying the areas between the r	ontstown/Eiton son series and un	he Banagner/Allen pear ser	ries.				
1. General Permeability Indica	itors and Region Characteristic							
Rock type	BN boston hill tmn - nodular mude	ly lst&shale						
Depth to bedrock	Generally greater than 10m	/ 11 1 N						
Subsoil type	Undifferentiated till (clayey grave)	gravelly clay)	0 1 1 1 1	C	1			
Soil type	Allenwood complex comprises the	mylerstown groundwater giey α	<u>k peaty gleys, thus a mixu</u>	are of peaty soils and gro	ey-brown podzone	cs. Three samples analysed.		
Vegetation and land use	Rushes where it is not managed and	1 pasture where it has undergone	e drainage.					
Artificial drainage density	High							
Natural drainage density	High							
Topography and attitude	Flat.							
Ave. effective rainfall (mm)	750-875mm of precipitation.							
2. Summary of Particle Size Ai	nalysis and Field Descriptions	of Subsoil Samples.						
NB Particle distributions adjusted to discount	t particles greater than 20mm. Graphs only d	epict samples taken from 1) a known dep	pth exceeding 1.5m in boreholes	or 1m in exposures, AND 2) lo	ocations not at permea	<i>ubility boundaries.</i>		
Summary of particle size data: p	roportion of clay fraction in each	Summary of particle size	e data: proportion of total fines	fraction in	Field description	on of samples: range in principal	subsoil types	
sam	ıple		each sample			described using BS5930:1999		
7 -		Fines % congrally Fine	- 0/	Time 0/ comouslly				
6 Clau & concercity indicator Clay	v % is Class 0/ conversity indicates low	5 indicates high K gener	s % Fines % is rally inconclusive	indicates low K 4	+ +			
5 + Clay > 0 generally inaccines income i	clusive K subsoils	subsoils indicates	; mod K	subsoils≥3	+			
	4 4	±3		ž2	+			
		2		1			II	
<9% 9% to <12% 12%	to 14% >14% to 17% >17%	<8% 8% to	<35% 35% to 50%	>50%	SAND & GRAVEL	SILT SILT/CLAY	CLAY	
Ranges in c	elay content	Ranges in t	total fines content (clay & silt)		Borehole samples	Exposure samples or sand & gravel quarries		
3. Data from Permeability Test	ts.	<u> </u>		I				
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	sults Range Values Typical value	Pump tests # Results Ra	nge Values Typical value	Lab tests # Resul	lts Range Values Typical valu	ie	
min/25mm	tests (m/sec):		(m/sec):		(m/sec):			
4. Summary and Analysis								
Criteria	Comments			Implicat	ions of each crite	rion for assessment of sub	soil permeability	
Quaternary / subsoil origin	Undifferentiated till				>>> L-M	,		
Particle size data	A variation from silty to clayey soi	ls.			>>> L-M			
Field description data	A variation from silty to clayey sul	osoils.			>>> L-M			
-								
Soil type	Loam-peaty loam-Peat				>>> L-M			
Artificial drainage density	High water table, big deep drains a	long perimeters and internal clos	sed field drains		>>> L-M			
Natural drainage density	High water table, margins of peat bogs.							
Permeability test data	-	5			>>> none			
Rock type	Muddy limestone				>>> L-M			
Land use	Where it has been drained there is	rough pasture used for sheep gra	azing.		>>> L-M			
			0	Overall conclusion	n >>> M			
5 COMMENTS: Subsoil norm	heability indicators are inconcl	usive on balance in order t	o he conservative it is	given a moderate ne	rmeghility			
5. COMMENTS: Subson perm	readinty indicators are inconcil	isive, on balance in order to	b be conservative it is g	given a moderate per	incability.			

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by

Description of unit location:	Occupies the flood plain alongside	the River Liffey.	Liney regosol					
Why is this a single K unit?	Occupies the flood plain alongside	the Divor Liffer						
Why is this a single K unit:	Occupies the mood plant alongstart	ne kiver Liney.						
1. General rerileaning multar	COTS and Kegion Characteristic	<u>\$</u>						
Rock type	Predominantity Linestone.							
	Generally greater than 10m							
	Limestone and undifferentiated un.							
Soil type	Liftey regosol - alluvium - ioalli-sin	.y-clay loam. Three samples						/
Vegetation and land use	Predominantiy pasture							/
Artificial drainage density	LOW							/
Natural drainage density								/
Topography and allitude	Generally 60m OD.							/
Ave. effective rainfail (mm) $2 - 2$	1750-875 precipitation.	<u></u>						
2. Summary of Particle Size An	alysis and Field Descriptions o	f Subsoil Samples.	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		ana a sana		I
NB Particle distributions adjustea to ascount	particles greater than 20mm. Graphs only ae	pict samples taken from 1) a known aepi	th exceeding 1.5m in porenoies	s or 1m in exposures, AN	ND 2) locations not a	at permeability boundaries.		/
Summary of particle size data: pr sam	coportion of clay fraction in each aple	Summary of particle size (data: proportion of total fine each sample	es fraction in	Field -	description of samples: ran described using F	ge in principal subsoil types \$S5930:1999	
4 Clay % generally indicates moderate or high K subsoils 1 0	ay% isClay% generally mclusivesubsoils	4 3 5 5 5 5 5 5 5 5 5 5 5 5 5			5 4 23 1 0			
<9% 9% to <12% 12% Ranges in	6 to 14% >14% to 17% >17% clay content	<8% 8% to < Ranges in t	<35% 35% to 50% .otal fines content (clay & silt)	>50%	SAND & GI	RAVEL SILT ole samples Exposure samples or sa	SILT/CLAY CLAY ind & gravel quarries	
3. Data from Permeability Test	ts.				<u> </u>			
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	ults Range Values Typical value	Pump tests # Results R	Range Values Typical	value Lab test	ts # Results Range Values	Typical value	
min/25mm	tests (m/sec):		(m/sec):		(m/sec)):		
4. Summary and Analysis								
Criteria	Comments			<u>Im</u>	plications of ea	ch criterion for assess	ment of subsoil per <u>meabil</u>	lity
Quaternary / subsoil origin	Alluvium				>>>	М		
Particle size data	Indicates moderate or high permeat	oility subsoils			>>>	L		
Field description data	Variation in the field description.	•			>>>	L-M		ļ
-								
Soil type	Alluvium - well drained - loam				>>>	М		l
Artificial drainage density	Low				>>>	М		l
Natural drainage density	Low				>>>	М		l
Permeability test data	-				>>>	-		l
Rock type	Limestone				>>>			l
Land use	Pasture				>>>	М		
				Overall conc	elusion <u>>>></u>	Μ		
5. COMMENTS: On balance s	ubsoil indicators suggest that th	e alluvium alongside the R	liver Liffey is modera	ately permeable.	,			

Description of unit location:	Occupying portions of the river val	levs in the west of the county. A	ssociated with a high wate	er table all yr. Rou	nd. Mapped in	Laois as Alluvium (s	ubtypes Po & K),	mapped in
	Limerick as the Camogue series			, , , , , , , , , , , , , , , , , , , 	real real provide the second s		,,,	
Why is this a single K unit?	Occupying the flood plains in the w	vestern part of Kildare, approxim	nately 2.5% of the county.					
1. General Permeability Indica	ators and Region Characteristic	28						
Rock type	Largely clean shelf limestones.							
Depth to bedrock	Generally 5-10 and greater than 10 ^r	m.						
Subsoil type	Alluvium.							
Soil type	Finnery complex comprises organic	2 & mineral materials. Four same	ples were analysed.					
Vegetation and land use	Largely restricted to rought summe	r grazing.	<u>.</u>					
Artificial drainage density	Large open drains and closed field	drains are common.						
Natural drainage density	High							
Topography and altitude	Flat and low-lying.							
Ave. effective rainfall (mm)	Approximately 750mm of precipita	ition.						
2. Summary of Particle Size Ai	nalysis and Field Descriptions c	of Subsoil Samples.						
NB Particle distributions adjusted to discount	t particles greater than 20mm. Graphs only de	epict samples taken from 1) a known dep	oth exceeding 1.5m in boreholes o	or 1m in exposures, AN	D 2) locations not	at permeability boundarie.	<i>s</i> .	
Summary of particle size data: p	aroportion of clay fraction in each	Summary of particle size	data: proportion of total fines (fraction in	Field	description of samples: r	range in principal sub	soil types
san	nple	Summary of particle size .	each sample	If action in	1 10-0	described using	g BS5930:1999	son cypes
4	· 	6	-		4]
Clay % generally Clay	y % is Clay % generally		Fines % is	Fines % generally	2			
3 indicates moderate or incom	chusive indicates low K subsoils	24 — generally general	inconclusive	indicates low K subsoils.	Ś.			
		$1 \frac{5}{53}$ + indicates high K indicates m	nod K		2			
			-259/ 4-509/	~50%	SAND & C	GRAVEL SILT	SILT/CLAY	CLAY
<9% to <12% 12% Ranges in (clay content	Solution Ranges	s in total fines content (clay & silt)	>30%	Boreh	hole samples Exposure samples	or sand & gravel quarries	
3 Data from Permeability Test	!	<u> </u>	· · ·	L				L
J. Data from Fernicating Fest T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	sults Range Values Typical value	Pumn tests # Results Ran	oge Values Typical v	alue Lab ter	sts # Results Range Valu	ues Typical value	
min/25mm	tests (m/sec):	ins Range (and s 1) prod (and	(m/sec):	ige values Typica	(m/sec	c):	ues rypical talac	
4. Summary and Analysis	i					,		
Criteria	Comments			Imp	lications of ea	ch criterion for asse	ssment of subsoil	permeability
Quaternary / subsoil origin	Generally alluvium or till.			•	>>>	L-M		• •
Particle size data	Variable with a tendency toward th	e low permeability end.			>>>	L-M		
Field description data	Variable, a mixture of sandy and cl	avev subsoils.			>>>	L-M		
1								
Soil type	Alluvium and peat				>>>	M-L		
Artificial drainage density	High				>>>	L		
Natural drainage density	High				>>>	L		
Permeability test data	8				>>>	-		
Rock type	Limestones.				>>>	M-L		
Land use	Pasture.				>>>	L-M		
				Overall concl	usion >>>	M		
5. COMMENTS: On balance sub	soil indicators are not conclusive, to b	e conservative the complex is give	en a moderate nermeability	rating. This is a sir	milar rating to t	that used in Laois for s	similar denosits.	
	Jon Incolory and Incolory	- conservative are compared as	n u houri ure p	1 atom go 1				

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by the Garristown Soil Series.

					· · · · · · · · · · · · · · · · · · ·				
Description of unit location:	Occuply a small area in the very north of kildare adjacent to meath								
Why is this a single K unit?	A surface water gley occupying a	distinct area in North Kildare.							
1. General Permeability Indica	tors and Region Characteristi	.cs							
Rock type	Namurian shales NAM								
Depth to bedrock	0-3;3-5m								
Subsoil type	Undifferentiated till			-					
Soil type	The Garristown soil series is aheav	y textured clay loam of poor stru	ucture, and is a surface wat	ter gley. Two sam	ples analyse	d.			
Vegetation and land use	Pasture, rushes where there is no a	rtificial drainage.							
Artificial drainage density	Drained using closed field drains.	_							
Natural drainage density	Several streams.								
Topography and altitude	Rolling				-				
Ave. effective rainfall (mm)	750-875mm of precipitation.								
2. Summary of Particle Size An	alysis and Field Descriptions	of Subsoil Samples.							
NB Particle distributions adjusted to discount	particles greater than 20mm. Graphs only a	depict samples taken from 1) a known dep	oth exceeding 1.5m in boreholes (or 1m in exposures, Al	VD 2) locations	not at permeai	bility boundaries.		
Summary of partials size data: n		Summary of particle size	data: proportion of total finas	fraction in	, I.I.	Nold description	an of somplost vo	and in principal sub	acail tunos
Summary of particle size data. pr	sample each sample					leia descriptio	described using	BS5930:1999	son types
		10 9 Fines % generally Fines % g	ronorally Fines % is	Fines % generally	£				
Clay % generally	, % is Clay % generally indicates	8 - indicates high K - indicates	mod K inconclusive	indicates low K					
indicates moderate or	low K subsoils	subsoils. subsoil	ils.	suosous.	4 >2				
high K subsoils				<i>↓</i>]'	en e				1
<u>2</u>				()'	<u>a</u> 2				1
				⊢−−−−− '					
				י ب اי	0 +				
<9% 9% to <12% 12%	to 14% >14% to 17% >17%	<8% 8% to	y <35% 35% to 50%	>50%	Bore	D & GRAVEL	SIL1	& gravel quarries	CLAY
Ranges in c	lay content	Ranges in	n total fines content (clay & silt)	J		ole samples	osti e sampres et su	<u>e graver quarters</u>	
3. Data from Permeability Test		4		. <u> </u>					
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Re	sults Range Values Typical value	Pump tests # Results Rar	nge Values Typical	value La	b tests # Resul	ts Range Value	es Typical value	
min/25mm	tests (m/sec):		(m/sec):		(1	a/sec):			
4. Summary and Analysis									
Criteria	Comments			Imy	plications o	f each criter	rion for assess	sment of subsoil	permeability
Quaternary / subsoil origin	Dense impermeable undifferentiate	ed till			>:	>> L-M			· ·
Particle size data	Variable and possibly not represen	tative as there are patches of high	her permeability material	within the series	>>	>> M-L			
Field description data	Largely clayey subsoils.	1			>:	>> M-L			
	<u> </u>								
Soil type	Clay Loam				>	>> L			
Artificial drainage density	Closed field drains on sloping grou	and			>.	>> L			
Natural drainage density	Ulah	ind			~ ~ ~	~ I			
	High				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	'> ь			
Permeability test data		· · · · · · · · · · · · · · · · · · ·	14.1	.1 \	//	*> -			
Rock type	Namurian shales (elsewhere in the	country are typically associated w	with low permeability sub-	soils)	>:	>> L			
Land use	Pasture with rushy slopes where no) field drains.		_	>>	>> L			_
				Overall concl	lusion >:	>> L			
5. Comments Subsoil permeabili	ity indicators suggest low perme	sability and the soil maps indi-	cate that the area is poo	rly or imperfect!	ly drained,	and field d	lescriptions w	vere mainly cla-	yey subsoils, on
balance, a Low permeability has	been assigned.	-		-	-				
1									

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by Kellistown and Newtown soil series

Description of unit location:	Mapped at the southern tip of kilda	are, intermingled with the Athy c	cpx and Newtown groundw	vater gley		
Why is this a single K unit?	Occupies 1.6% of the county, conf	aned to the southern tip of the co	ounty.			
1. General Permeability Indica	tors and Region Characteristi	108				
Rock type	Granite					!
Depth to bedrock	Largely 5-10m					!
Subsoil type	Limestone till					
Soil type	The KELLISTOWN soil series, a s	sandy loam which is well draine	ed. Six samples were used i	in the analysis.		!
Vegetation and land use	Largely tillage and pasture.		· · · · · · · · · · · · · · · · · · ·			!
Artificial drainage density	Low					/
Natural drainage density	Low					!
Topography and altitude	Undulating to rolling; 60-120m ΟΓ)				!
Ave. effective rainfall (mm)	750-875mm of precipitation.					!
2. Summary of Particle Size Ar	alysis and Field Descriptions /	of Subsoil Samples.				
NB Particle distributions adjusted to discount	t particles greater than 20mm. Graphs only d	lepict samples taken from 1) a known de	spth exceeding 1.5m in boreholes (or 1m in exposures, AN	IND 2) locations not at permeability boundaries.	!
Summary of narticle size data: p	reportion of clay fraction in each	Summary of narticle siz	ze data: proportion of total fines	e fraction in	Field description of samples: range in principal subsoil types	P
5 Sam	aple	c	each sample		described using BS5930:1999	_/
Clay & generally Cla		5 Fines % generally Fines %	eenerally Fines % is	Fines % generally		
4 indicates moderate or incor	^{-7% IS} Clay % generally indicates nclusive low K subsoils	4 + indicates high K indicates	s mod K inconclusive	indicates low K subsoils.		I
3 high K subsoils			oils.	⊢]′		
		Ē ₂		ا		
				(]'		
			,	(P		
$0 + \frac{9\%}{12\%} = \frac{9\%}{12\%} = \frac{12\%}{12\%}$	$4 \pm 1.4\% > 1.4\% \pm 0.17\% > 1.7\%$	0 + *	to <35% 35% to 50%	>50%	SAND & GRAVEL SILT SILT/CLAY CLA	AY
Ranges in c	clay content	Ranges	in total fines content (clay & silt)	- 30,00	Borehole samples Exposure samples or sand & gravel quarries	-
2 Data from Darmaghility Test		<u> </u>		J		¥
5. Data from Permeability 1 con T! faster # Desulte # Tests T<1	S. <u># Tests T\50</u> Variable head # Re		Burn taste # Recults Ra		Leveler Lak toota # Dogulta Danga Values Tunical value	
min/25mm	# Tests 1/30 variable near mices tests (m/sec):	ulls Ralige values Typical value	(m/sec):	ige values Typicar,	Value Lab tests # results realize values rypical value (m/sec):	ŀ
4 Summary and Analysis			(11,500).			
Criteria	Comments			Im [,]	anlications of each criterion for assessment of subsoil permeat	hility
Ouaternary / subsoil origin	Limestone tills with less than 20%	granite/shale admixture.		•	>>> M	mi,
Particle size data	Suggests moderate or high permea'	hility subsoil			>>> M-H	ŀ
Field description data	Generally sandy or silty subsoils.	Jinty Subseti.			>>> M	ŀ
	Generally suita, or suit, suita -					
Soil type	Generally a well drained sandy loa	am			>>> M	
Artificial drainage density	I ow				>>> M-H	
Natural drainage density	Low				>>> M-H	
Permeability test data	-				>>> _	
Rock type	Granite				>>> M	
I and use	Tillage and pasture				>>> M	
	Thiage and pastere			Overall conc	alucion >>> M	
5 Commente: Subseil nermest	hility indicators suggest moder	tata high normoshility and	the sail mans indicate t	that the area is	anavally avaossivaly wall drained on balance a moder	ento
5. Comments. Subson permeas	1 It ' Plate that the years from	ate-ingli per incapine, and e	Ill' sull maps mulcare a	flat the area is e	generally excessively wen ut aneu, on balance, a mourt	ale
permeability has been assigned	It is likely that the very irequ	iency sand and graver units	s mapped on the margo	ns of this unit, a	are in fact interspersed within it. I his would help to inc	crease
the overall subsoil permeability	y.					

Summary of Permeability Data and Analyses for Subsoils Mapped as Till, and Overlain by Grange Series Soils

				- FF	,	01				
Description of unit location:	Extreme north east of kildare occup	ying 0.33% of the cour	nty.							
Why is this a single K unit?	A unique soil type to Kildare, occu	pying a small area of th	e county.							
1. General Permeability Indica	tors and Region Characteristic	<u>- 5 - 5</u> 28	5							
Rock type	Calp lst (CD)									
Depth to bedrock	generally \leq 5m and \leq 3m in parts wi	th outcrop								
Subsoil type	Limestone till									
Soil type	Grange soil series - The 'C' horizon is a gritty to sandy loam with some gravel pockets. One sample taken.									
Vegetation and land use	Pasture			- I	··· F · ··· · ·					
Artificial drainage density	Low									
Natural drainage density	Low									
Topography and altitude	undulating (3-4degs), 70mOD									
Ave. effective rainfall (mm)	precipitation approximately 750mm	n/yr								
2. Summary of Particle Size A	nalysis and Field Descriptions (of Subsoil Samples.								
NB Particle distributions adjusted to discount	t particles greater than 20mm. Graphs only d	epict samples taken from 1) a	known depth exceedir	ng 1.5m in boreholes	s or 1m in exposures, AN	D 2) location	s not at permea	bility boundaries.		
						,				
Summary of particle size data: p	roportion of clay fraction in each	Summary of pa	each san	portion of total line	s fraction in		riela descripti	on of samples: rai	nge in principal sub BS5930:1999	son types
5		5 Finas % approvally	Fines % generally	Fines % is	Fines % generally	5		ueseribeu using		
4 - Clay % generally indicates Cla	ay % is Clay % generally indicates	4 - indicates high K -	- indicates mod K —	inconclusive —	indicates low K	4				
3 moderate or high K subsoils inco	nclusivelow K subsoils	subsoils. −	subsoils.		subsoils.	≥3 —				
ารี 2		nb				Janba				
						52 1				
$0 + \frac{9\%}{9\%} + \frac{9\%}{12\%} + \frac{12\%}{12\%}$	14% >14% to 17% >17%	0 +	8% to <35%	35% to 50%	>50%	0 +	ND & GRAVEL	SILT	SILT/CLAY	CLAY
Ranges in c	clav content	-070	Ranges in total fines	content (clay & silt)	- 5070	51	Borehole sample	s Exposure samples o	r sand & gravel quarries	CENT
	-						•		<u> </u>	
3. Data from Permeability Test	ts.									
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Res	ults Range Values Typics	al value Pump	tests # Results Ra	ange Values Typical v	alue La	b tests # Resu	ts Range Values	s Typical value	
min/25mm	tests (m/sec):		(m/s	sec):		(1	n/sec):			
4. Summary and Analysis	-				_					
Criteria	Comments				Imp	lications o	f each crite	rion for assess	ment of subsoil	permeability
Quaternary / subsoil origin	Limestone Till					>	>> L-M			
Particle size data	The one sample suggests moderate	or high permeability				>:	>> M			
Field description data	The one sample suggests a silty to c	clayey subsoil.				>	>> L-M			
Soil type	Well drained gritty sandy loam					>	>> M			
Artificial drainage density	Low					>	>> M			
Natural drainage density	Low					>:	>> M			
Permeability test data						>:	>>			
Rock type	Muddy limestone					>	>> L-M			
Land use	Pasture					>	>> M			_
					Overall conclu	usion >	>> M			
5. Comments: Subsoil permeab	oility indicators suggest moder:	ate-high permeabilit	y and the soil n	naps indicate	that the area is g	enerally	excessively	well drained	l, on balance, a	a moderate
permeability has been assigned	1.		-	-	-	-	-			
1 ···· · · · · · · · · · · · · · · · ·										

	Summary	of Permeability Data and Analyse	es for Subsoils Mapped a	s Till, and Overlain by	y Donagherur	nper Series			
Description of unit location:	Extreme north east of kildare occu	pying 0.35% of the county.							
Why is this a single K unit?	A unique soil type to Kildare, occu	pying a small area of the county.							
. General Permeability Indica	tors and Region Characteristic	8							
lock type	Calp (muddy) limestone								
epth to bedrock	generally <5m and <3m in parts w	ith outcrop							
ubsoil type	Limestone till								
bil type	Donaghcrumper Series - grey brow	n podzolic, moderately well drain	ned loam-clay loam. One	sample.					
egetation and land use	Generally pasture								
rtificial drainage density	Low								
atural drainage density	Low								
pography and altitude	Flattish to undulating; 61m OD								
ve. effective rainfall (mm)	750mm precipitation approximatel	у							
Summary of Particle Size An	alysis and Field Descriptions o	f Subsoil Samples.							
<i>3 Particle distributions adjusted to discount</i>	particles greater than 20mm. Graphs only o	lepict samples taken from 1) a known dept	th exceeding 1.5m in boreholes	or 1m in exposures, AND 2	2) locations not a	t permeability bo	undaries.		
Summary of particle size data: p	roportion of clay fraction in each	Summary of particle size	e data: proportion of total find each sample	es fraction in	Field	l description of s descr	amples: range	in principal sut 930:1999	osoil types
4 Clay % generally indicates moderate or high K subsoils	ny % is nclusive Clay % generally indicates low K subsoils	4 Fines % generally Fines %, indicates high K indicate subsoils. subs E 2 1	generally Fines % is es mod K - inconclusive - soils	Fines % generally - indicates low K subsoils.	4				
0 <9% 9% to <12% 12% Ranges in	to 14% >14% to 17% >17% clay content	0	<pre>>35% to 50% n total fines content (clay & silt)</pre>	>50%	0 SAND &	GRAVEL	SILT	SILT/CLAY	CLAY
Data from Permeability Test	S.								
T' tests: # Results # Tests T<1	# Tests T>50 Variable head # Re	esults Range Values Typical value	Pump tests # Results R	ange Values Typical val	ue Lab tes	sts # Results R	ange Values	Typical value	
min/25mm	tests (m/sec):		(m/sec):		(m/see	:):			
Summary and Analysis					• .• •		e		
iteria	Limestene Till			Impi	ications of ea		for assessme	nt of subson	permeability
ratemary / subson origin					>>>	L-IVI			
Ille Size data	Only one sample - inconclusive	very subsecil			///	L-IVI			
nd description data	Only one sample that suggests clay	ey subsoll.			///	L-IVI			
il type	Grey brown podzolic; loam to clay	loam that is moderately well drai	ined.		>>>	М			
tificial drainage density	Low				>>>	М			
tural drainage density	Low				>>>	М			
meability test data	-				>>>				
ock type	Muddy limestone				>>>	L-M			
nd use	Pasture				>>>	L-M			
				A B B	• • • • • •	м —			-

Appendix IV: Discussion Of the Key Indicators of Domestic and Agricultural Contamination of Groundwater

A.1 Introduction

This appendix is adapted from Daly, 1996.

There has been a tendency in analysing groundwater samples to test for a limited number of constituents. A "full" or "complete" analysis, which includes all the major anions and cations, is generally recommended for routine monitoring and for assessing pollution incidents. This enables (i) a check on the reliability of the analysis (by doing an ionic balance), (ii) a proper assessment of the water chemistry and quality and (iii) a possible indication of the source of contamination. A listing of recommended and optional parameters are given in Table A1. It is also important that the water samples taken for analysis have not been chlorinated - this is a difficulty in some local authority areas where water take-off points prior to chlorination have not been installed.

The following parameters are good contamination indicators: E.coli, nitrate, ammonia, potassium, chloride, iron, manganese and trace organics.

TABLE A1								
Recommended Parameters								
Appearance	Calcium (Ca)	Nitrate (N0 ₃)*						
Sediment	Magnesium (Mg)	Ammonia (NH ₄ and NH ₃)*						
pH (lab)	Sodium (Na)	Iron (Fe)*						
Electrical Conductivity (EC)*	Potassium (K)*	Manganese (Mn)*						
Total Hardness	Chloride Cl)*							
General coliform	Sulphate $(S0_4)^*$							
E. coli *	Alkalinity							
Optional Parameters (depend	ling on local circumstance	es or reasons for sampling)						
Fluoride (F)	Fatty acids *	Zinc (Zn)						
Orthophosphate	Trace organics *	Copper (Cu)						
Nitrite $(N0_2)^*$	TOC *	Lead (Pb)						
B.O.D.*	Boron (B) *	Other metals						
Dissolved Oxygen *	Cadmium (Cd)							
* good indicators of contamination								

A.2 Faecal Bacteria and Viruses

E. coli is the parameter tested as an indicator of the presence of faecal bacteria and perhaps viruses; constituents which pose a significant risk to human health. The most common health problem arising from the presence of faecal bacteria in groundwater is diarrhoea, but typhoid fever, infectious hepatitis and gastrointestinal infections can also occur. Although E. coli bacteria are an excellent indicator of pollution, they can come from different sources - septic tank effluent, farmyard waste, landfill sites, birds. The faecal coliform : faecal streptococci ratio has been suggested as a tentative

indicator to distinguish between animal and human waste sources (Henry *et al.*, 1987). However, researchers in Virginia Tech (Reneau, 1996) cautioned against the use of this technique.

Viruses are a particular cause for concern as they survive longer in groundwater than indicator bacteria (Gerba and Bitton, 1984).

The published data on elimination of bacteria and viruses in groundwater has been compiled by Pekdeger and Matthess (1983), who show that in different investigations 99.9% elimination of *E. coli* occurred after 10-15 days. The mean of the evaluated investigations was 25 days. They show that 99.9% elimination of various viruses occurred after 16-120 days, with a mean of 35 days for Polio-, Hepatitis, and Enteroviruses. According to Armon and Kott (1994), pathogenic bacteria can survive for more than ten days under adverse conditions and up to 100 days under favourable conditions; entertoviruses can survive from about 25 days up to 170 days in soils.

Bacteria can move considerable distances in the subsurface, given the right conditions. In a sand and gravel aquifer, coliform bacteria were isolated 100 ft from the source 35 hours after the sewage was introduced (as reported in Hagedorn et al., 1981). They can travel several kilometres in karstic aquifers. In Ireland, research at Sligo RTC involved examining in detail the impact of septic tank systems at three locations with different site conditions (Henry, 1990; summarised in Daly, Thorn and Henry, 1993). Piezometers were installed down-gradient; the distances of the furthest piezometers were 8 m,10 m and 9.5 m, respectively. Unsurprisingly, high faecal bacteria counts were obtained in the piezometers at the two sites with soakage pits, one with limestone bedrock at a shallow depth where the highest count (max. 14 000 cfu's per 1000 ml) and the second where sand/gravel over limestone was present (max 3 000 cfu's per 100 ml). At the third site, a percolation area was installed at 1.0 m b.g.l; the subsoils between the percolation pipes and the fractured bedrock consisted of 1.5 m sandy loam over 3.5 m of poorly sorted gravel; the water table was 3.5 b.g.l. (So this site would satisfy the water table and depth to rock requirements of S.R.6:1991, and most likely the percolation test requirement.) Yet, the maximum faecal coliform bacteria count was 300 cfus per 100 ml. Faecal streptocci were present in all three piezometers. It is highly likely that wells located 30 m down gradient of the drainage fields would be polluted by faecal bacteria.

As viruses are smaller than bacteria, they are not readily filtered out as effluent moves through the ground. The main means of attenuation is by adsorption on clay particles. Viruses can travel considerable distances underground, depths as great as 67 m and horizontal migrations as far as 400 m have been reported (as reported in US EPA, 1987). The possible presence of viruses in groundwater as a result of pollution by septic tank systems is a matter of concern because of their mobility and the fact that indicator bacteria such faecal coliforms have been found not to correlate with the presence of viruses in groundwater samples (US EPA, 1987).

The natural environment, in particular the soils and subsoils, can be effective in removing bacteria and viruses by predation, filtration and absorption. There are two high risk situations: (i) where permeable sands and gravels with a shallow water table are present; and (ii) where fractured rock, particularly limestone, is present close to the ground surface. The presence of clayey gravels, tills, and peat will, in many instances, hinder the vertical migration of microbes, although preferential flow paths, such as cracks in clayey materials, can allow rapid movement and bypassing of the subsoil.

A.3 Nitrate

Nitrate is one of the most common contaminants identified in groundwater and increasing concentrations have been recorded in many developed countries. The consumption of nitrate rich water by young children may give rise to a condition known as methaemoglobinaemia (blue baby syndrome). The formation of carcinogenic nitrosamines is also a possible health hazard and epidemiological studies have indicated a positive correlation between nitrate consumption in drinking

water and the incidence of gastric cancer. However, the correlation is not proven according to some experts (Wild and Cameron, 1980). The EC MAC for drinking water is 50mg/l.

The nitrate ion is not adsorbed on clay or organic matter. It is highly mobile and under wet conditions is easily leached out of the rooting zone and through soil and permeable subsoil. As the normal concentrations in uncontaminated groundwater is low (less than 5 mg/l), nitrate can be a good indicator of contamination by fertilisers and waste organic matter.

In the past there has been a tendency in Ireland to assume that the presence of high nitrates in well water indicated an impact by inorganic fertilisers. This assumption has frequently been wrong, as examination of other constituents in the water showed that organic wastes - usually farmyard waste, probably soiled water - were the source. The nitrate concentrations in wells with a low abstraction rate - domestic and farm wells - can readily be influenced by soiled water seeping underground in the vicinity of the farmyard or from the spraying of soiled water on adjoining land. Even septic tank effluent can raise the nitrate levels; if a septic tank system is in the zone of contribution of a well, a four-fold dilution of the nitrogen in the effluent is needed to bring the concentration of nitrate below the EU MAC (as the EU limit is 50 mg/l as NO₃ or 11.3 mg/l as N and assuming that the N concentration in septic tank effluent is 45 mg/l).

The recently produced draft county reports by the EPA on nitrate in groundwater show high levels of nitrate in a significant number of public and group scheme supplies, particularly in south and southern counties and in counties with intensive agriculture, such as Carlow and Louth. This suggest that diffuse sources – landspreading of fertilisers – is having an impact on groundwater.

In assessing regional groundwater quality and, in particular the nitrate levels in groundwater, it is important that:

- (i) conclusions should not be drawn using data only from private wells, which are frequently located near potential point pollution sources and from which only a small quantity of groundwater is abstracted;
- (ii) account should be taken of the complete chemistry of the sample and not just nitrate, as well as the presence of *E. coli*.;
- (iii) account should be taken of not only the land-use in the area but also the location of point pollution sources;
- (iv) account should be taken of the regional hydrogeology and the relationship of this to the well itself. For instance, shallow wells generally show higher nitrate concentrations than deeper wells, low permeability sediments can cause denitrification, knowledge on the groundwater flow direction is needed to assess the influence of land-use.

A.4 Ammonia

Ammonia has a low mobility in soil and subsoil and its presence at concentrations greater than 0.1 mg/l in groundwater indicates a nearby waste source and/or vulnerable conditions. The EU MAC is 0.3 mg/l.

A.5 Potassium

Potassium (K) is relatively immobile in soil and subsoil. Consequently the spreading of manure, slurry and inorganic fertilisers is unlikely to significantly increase the potassium concentrations in groundwater. In most areas in Ireland, the background potassium levels in groundwater are less than 3.0 mg/l. Higher concentrations are found occasionally where the rock contains potassium e.g. certain granites and sandstones. The background potassium:sodium ratio in most Irish groundwaters is less than 0.4 and often 0.3. The K:Na ratio of soiled water and other wastes derived from plant organic

matter is considerably greater than 0.4, whereas the ratio in septic tank effluent is less than 0.2. Consequently a K:Na ratio greater than 0.4 can be used to indicate contamination by plant organic matter - usually in farmyards, occasionally landfill sites (from the breakdown of paper). However, a K:Na ratio lower than 0.4 does not indicate that farmyard wastes are **not** the source of contamination (or that a septic tank is the cause), as K is less mobile than Na. (Phosphorus is increasingly a significant pollutant and cause of eutrophication in surface water. It is <u>not</u> a problem in groundwater as it usually is not mobile in soil and subsoil).

A.6 Chloride

The principle source of chloride in uncontaminated groundwater is rainfall and so in any region, depending on the distance from the sea and evapotranspiration, chloride levels in groundwater will be fairly constant. Chloride, like nitrate, is a mobile cation. Also, it is a constituent of organic wastes. Consequently, levels appreciably above background levels (12-15 mg/l in Co. Offaly, for instance) have been taken to indicate contamination by organic wastes such as septic tank systems. While this is probably broadly correct, Sherwood (1991) has pointed out that chloride can also be derived from potassium fertilisers.

A.7 Iron and manganese

Although they are present under natural conditions in groundwater in some areas, they can also be good indicators of contamination by organic wastes. Effluent from the wastes cause deoxygenation in the ground which results in dissolution of iron (Fe) and manganese (Mn) from the soil, subsoil and bedrock into groundwater. With reoxygenation in the well or water supply system the Fe and Mn precipitate. High Mn concentrations can be a good indicator of pollution by silage effluent. However, it can also be caused by other high BOD wastes such as milk, landfill leachate and perhaps soiled water and septic tank effluent.

Box A1 Warning/trigger Levels for Certain Contaminants

As human activities have had some impact on a high proportion of the groundwater in Ireland, there are few areas where the groundwater is in a pristine, completely natural condition. Consequently, most groundwater is contaminated to some degree although it is usually not polluted. In the view of the GSI, assessments of the degree of contamination of groundwater can be beneficial as an addition to examining whether the water is polluted or not. This type of assessment can indicate where appreciable impacts are occurring. It can act as a warning that either the situation could worsen and so needs regular monitoring and careful land-use planning, or that there may be periods when the source is polluted and poses a risk to human health and as a consequence needs regular monitoring. Consequently, thresholds for certain parameters can be used to help indicate situations where additional monitoring and/or source protection studies and/or hazard surveys may be appropriate to identify or prevent more significant water quality problems.

Parameter	Threshold	EU MAC
	mg/l	mg/l
Nitrate	25	50
Potassium	4	12
Chloride	30 (except near sea)	250
Ammonia	0.15	0.3
K/Na ratio	0.3-0.4	
Faecal bacteria	0	0

Box A2 Summary : Assessing a Problem Area

Let us assume that you are examining an area with potential groundwater contamination problems and that you have taken samples in nearby wells. How can the analyses be assessed?

E. coli present \Rightarrow organic waste source nearby (except in karst areas), usually either a septic tank system or farmyard.

E. coli absent \Rightarrow either not polluted by organic waste or bacteria have not survived due to attenuation or time of travel to well greater than 100 days.

Nitrate > 25 *mg/l* \Rightarrow either inorganic fertiliser or organic waste source; check other parameters.

Ammonia > 0.15 mg/l \Rightarrow source is nearby organic waste; fertiliser is not an issue.

Potassium (K) > 5.0 mg/l \Rightarrow source is probably organic waste.

K/Na ratio > 0.4 (0.3, *in many areas*) \Rightarrow Farmyard waste rather than septic tank effluent is the source. If < 0.3, no conclusion is possible.

Chloride > 30 $mg/l \Rightarrow$ organic waste source. However this does not apply in the vicinity of the coast (within 20 km at least).

In conclusion, faecal bacteria, nitrate, ammonia, high K/Na ratio and chloride indicate contamination by organic waste. However, only the high K/Na helps distinguish between septic tank effluent and farmyard wastes. So in many instances, while the analyses can show potential problems, other information is needed to complete the assessment.

A.8 References

Armon, R. and Kott, Y., 1994. The health dimension of groundwater contamination. In: Zoller, U. (Editor), Groundwater Contamination and Control. Published by Marcel, Dekker, Inc., pp71-86.

- Daly, D. 1996. Groundwater in Ireland. Course notes for Higher Diploma in Environmental Engineering, UCC.
- Daly, D., Thorn, R. and Henry, H., 1993. Septic tank systems and groundwater in Ireland. Geological Survey Report Series RS 93/1, 30pp.
- Gerba, C.P. and Bitton, G., 1984. Microbial pollutants : their survival and transport pattern to groundwater. In : G.Bitton and C.P. Gerba (Editors), Groundwater Pollution Microbiology, Wiley Intersciences Publishers, pp 65-88.
- Hagedorn, C., McCoy, E.L. and Rahe, T. M. 1981. The potential for ground water contamination form septic tank effluents. Journal of Environmental Quality, volume 10, no. 1, p1-8.
- Henry, H. (1990). An Evaluation of Septic Tank Effluent Movement in Soil and Groundwater Systems. Ph.D. Thesis. Sligo Regional Technical College. National Council for Education Awards -Dublin.
- Reneau, R.B. 1996. Personal communication. Virginia Polytechnic Institute and State University.
- Sherwood, M., 1991. Personal communication, Environmental Protection Agency.
- US EPA. 1987. Guidelines for delineation of wellhead protection areas. Office of Ground-water Protection, U.S. Environmental Protection Agency.
- Wild, A. and Cameron, K.C., 1980. Nitrate leaching through soil and environmental considerations with special reference to recent work in the United Kingdom. Soil Nitrogen -Fertilizer or Pollutant, IAEA Publishers, Vienna, pp 289-306.

location	County	Plat_no	location	Scheme deta	alls NGR	Easting	Northing	type	LAD	LAB_REF	date	pH	pH_field	Temp(O c)	Temp_Field (D c	Delvd oxgen %eat	DO_field (mgll)	DO_field (%eat)	B00(mgil 02)	Conduct (us/cm)	conduct_field_u	Ammonia (mg1 N)	O-Phosphate (mg)	TON (mg/l N)
Castledernot WS	ĸD	6	Castledermot WS	Castledermot @ Plunketstown	5805860	280527	186017	Dore	DUB	3718	11/21/95	7.29		nda		nda			nda	718		+0.005	0.015	6.704
Castledernot WS	KID	6	Castledermot WS	Castledermot @ Plunketstown	5805860	280527	186017	Dore	DUB	2988	08/21/96	7.12		nda		nda			nda	683		+0.01	0.012	7.621
Castledermot WS	KID	6	Castledermot WS	Castledermot @ Plunketstown	5805860	280527	186017	Bore	DUB	4095	11/20/96	7.36		nda		rda			nda	712		+0.01	0.0215	8.629
Castedernot WS	KD	6	Castledermot WS	Castledermot @ Plunketstown	5805860	280527	186017	Bore	DUB	4342	11/05/97	7.24		nda		nda			nda	652		0.018	0.018	8.927
Castedernot WS	KID	6	Castledermot WS	Castedernot @ Plunkstatown	5805800	280527	186017	Bare	DUB	2184	091056	7.51		nda		nda			nda	599		2.589	0.0901	9.329
Castledernot WS	KID	6	Castledermot WS		5805860	280527	186017	Dore	DUB	116	01/14/99	7.4	nda	9.3	9.3	nda	9.40	85.3	nda	609	nda	+0.01	0.01127	9.49
Castledernot WS	KID	6	Castledermot WS		5805860	280527	186017	Dore	DUB	3211	10/12/99	7.89	nda	10.1	10.1	nda	nda		nda	356	430	0.015	1.32539	2.74
Kiberty Area WS	KID	9	Kiberry Area WS		N652000	255200	200000	Bore	DUB	3014	08/22/96	7.39		nda		nda			nda	799		+0.01	0.029	10.559
Kiberty Area WS	KID	9	Kiberry Area WS		N652000	255200	200000	Bore	DUB	4079	11/13/56	7.54		nda		nda			nda	820		+0.01	0.009	9.934
Kiberry Area WS	KID	9	Kiberry Area WS		N652000	265200	200000	Dore	DUB	4329	11/04/97	7.21		nda		nda			nda	700		+0.01	0.008	10.755
Kiberty Area WS	KID	9	Kiberry Area WS		N652000	255200	200000	Bore	DUB	695	02/12/98	7.25		nda		rda			nda	750		+0.01	0.007	14.407
Kiberry Area WS	KID	9	Kiberry Area WS		N662000	266200	200000	Bore	DUB	3152	09/05/98	7.12		nda		nda			nda	742		40.01	0.0096	10.84
Kiberry Area WS	KD	2	Kiberry Area WS		N652000	266200	200000	Bore	DUB	2775	09/23/99	7.12	nda	12.4	12.4	nda	6.1	54	nda	742	926	40.01	0.005	9.174
Kiberry area WS	KID	-	Kiberry ana WS		N652000	295200	200000	Bare	DUB	726	02/09/00	7.25	nda	19.4	10.4	rda	0.45		nda	751	64R	40.01	9.01	9.44
Kiberry area WS	KID	9	Kiberry area WS		N652000	255200	200000	Dore	DUB	5809	11/21/00	7.443	nda	11.7	11.7	6.24	6.24		nda	833	862	0.02	0.005558	6.745
Kiberry area WS	ĸD	9	Kiberry area WS		N662000	266200	200000	Bore	DUB	1467	040401	7.161	nda	9	9	7.11	7.11		nda	856	893	+0.01	0.023987	10.801
Monasterevin WS(spring@Hybla)	KID	14	Monasterevin WS(spring@Hybia)		N542125	254230	212502	Spring	DUB	3167	09/03/98	7.38		nda		nda			nda	611		+0.01	0.029	3.247
Monasterevin WS(spring@Hybla)	KID	14	Monasterevin WS(spring@Hybla)		N542125	264230	212502	Spring	DUB	92	01/1399	7.54	nda	9.5	11.2	nda	2.42	23	nda	507	nda	+0.01	0.011	3.134
Monasterevin WS(spring@Hybla)	KID	14	Monasterevin WS(spring@Hybia)		N542125	254230	212502	Spring	DUB	3202	10/11/99	7.45	nda	11.2	11.2	nda	nda		nda	614	758	+0.01	0.005	3.42
Monasterevin WS(spring@Hybla)	KID	14	Monasterevin WS(spring@Hybia)		N542125	264230	212502	Spring	DUB	724	02/09/00	7.36	nda	9.9	9.9	nda	5.35		nda	651	728	+0.01	+0.005	3.11
Monasterevin WS(spring@Hybla)	KID	14	Monasterevin WS(spring@Hybia)		N542125	254230	212502	Spring	DUB	5011	11/21/00	7.467	nda	9.9	9.9	4.15	4.15		nda	693	717	+0.01	+0.005	2.225
Monasterevin WS(spring@Hybla)	KD	14	Monasterevin WS(spring@Hybia)	Deliterty	NE42125	264230	212502	Spring	DUB	1469	04/04/01	7.33	nda	93	9.5	4.92	4.92		nda	868	723	0.04	0.018274	3.27
Monasterin WS (BH No. ((Ballykely))	KD KD	15	Monantavin WS (Bit No. 1/Balyka)	yy anywaty	N642125	204230	211002	Bore	DUR	3012	052255	7.2		nda.		nta			nda	837		-0.005	0.005	8 175
Monastevin WS (BH No. 1(Ballykely))	KID	15	Monastrevin WS (EH No. 1(Ballyke)	v) Balvkely	N642125	254230	212502	Bare	DUB	4001	11/19/96	7.2		rda		rda			nda	87		40.01	0.007	0.154
Monastrevin W/S (EH No. 1(EallykeBy))	KID	15	Monastrevin WS (EH No. 1(Eallyke)	iyi) Baliykaliy	5642125	264230	212502	Bore	DUB	3166	09/03/56	7.19		nda		nda			nda	759		+0.01	0.009	8.437
Monastrevin W/S (EH No. 1(Eallykely))	KID	15	Monastrevin WS (EH No. 1(Eallyke)	iyi) Baliykaliy	5642125	264230	212502	Bore	DUB	91	01/1399	7.28	nda	11.2	10.8	nda	7.20	67.7	nda	753	nda	+0.01	0.009	7.779
Monastrevin WS (BH No.1(Ballykelly))	ĸD	15	Monastrevin WS (BH No.1(Ballykell	lyj) Ballykelly	5642125	264230	212502	Bore	DUB	5812	11/21/00	7.319	nda	10.8	10.8	nda	nda		nda	880	911	0.059	+0.005	4.077
Monastrevin WS (BH No.1(Ballykelly))	ĸD	15	Monastrevin WS (BH No.1(Ballykell	lyj) Ballykelly	5642125	264230	212502	Bore	DUB	1470	04/04/01	7.202	nda	10.7	10.7	5.35	5.36		nda	871	911	+0.01	0.014014	6.722
Churchtown WS	KID	10	Churchtown WS	Churchtown	5642955	254000	195500	Bore	DUB	3015	08/22/96	7.3		nda		nda			nda	728		+0.01	0.015	12.548
Churchtown WS	KID	10	Churchtown WS	Churchtown	5540955	254000	195500	Bore	DUB	4078	11/13/56	7.34		nda		nda			nda	203		+0.01	0.014	9.784
Churchlown WS	KID	18	Churchtown WS	Churchtown	\$642955	254000	195500	Bore	DUB	4328	11/04/97	7.32		nda		nda			nda	647		+0.01	0.015	12.147
Churchtown WS	KID	18	Churchtown WS	Churchtown	\$642955	254000	195500	Bore	DUB	4714	12/09/97	7.46		nda		rda			nda	662		0.014	0.016	12.76
Churchtown WS	КD	10	Churchtown WS	Churchtown	5640955	254000	195500	Done	DUB	696	02/12/98	7.37		nda		nda			nda	607		-0.01	0.013	13.136
Churchtewn WS	KD	10	Charbinen WS	Churchteen	5040405	254000	195500	Bone	DUR	3153	01/12/98	7.44	ota	10.4	10.4	nda	473	80.6	nda	607		40.01	0.0143	10.982
Churchtewn WS	KID	10	Churchtown WS	Churchtown	5640955	254000	195500	Bare	DUB	2774	092399	7.25	nda	10.0	10.6	rda	7.0		nda	607	767	40.01	0.013	19
Churchtown WS	KID	18	Churchtown WS	Churchtown	5540955	254000	195500	Bore	DUB	727	02/09/00	7.33	nda	10.8	10.8	nda	8.85		nda	693	775	+0.01	0.011	9.99
Churchlown WS	KID	10	Churchtown WS	Churchtown	5642955	254000	195500	Bore	DUB	5808	11/21/00	7.395	nda	10	10	8.1	8.1		nda	735	759	-0.01	0.005101	10.554
Churchtown WS	ĸD	18	Churchtown WS	Churchtown	5642955	254000	195500	Bore	DUB	1466	04/04/01	7.242	nda	10.8	10.8	8.63	8.63		nda	724	753	+0.01	0.026112	10.057
Monasterevin WS (Lughil)	KID	20	Monaeterevin WS (Lughili)		NE35064	263507	206482	3 No. Springs	DUB	3717	11/21/95	7.27		nda		nda			nda	725		+0.005	0.015	6.243
Monastenevin WS (Lughil)	KID	20	Monasterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	3013	08/22/96	7.18		nda		nda			nda	732		+0.01	0.01	7.736
Monastenevin WS (Lughil)	KID	20	Monasterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	4080	11/12/96	7.18		nda		nda			nda	747		+0.01	0.009	8.132
Monastenevin WS (Lughil)	KID	20	Monasterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	4330	11/04/97	7.17		nda		nda			nda	665		+0.01	0.009	7.72
Monasterevin WS (Lughil)	KID	20	Monaeterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	652	02/11/98	7.21		nda		nda			nda	653		-0.01	0.009	8.327
Monastanavin WS (Lugha)	ND ND	20	Managarevin WS (Lughil)		NE35064	263507	200482	3 No. Springs	DUR	3165	04/04/08	7.23		10.0		rda			nda	644		-0.01	0.011	0.002
Monasterevin WS (Luphil)	KID	20	Monasterevin WS (Luphil)		NE35054	263507	205482	3 No. Springs	DUB	2794	092199	7.19	nda	11.2	11.2	rda	5.6		nda	659	804	40.01	0.007	7.695
Monasterevin WS (Lughil)	KID	20	Monasterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	725	02/09/00	7.22	nda	10.9	10.9	nda	6.83		nda	701	789	+0.01	0.007	7.41
Monasterevin WS (Lughil)	KID	20	Monasterevin WS (Lughill)		NE35064	263507	206482	3 No. Springs	DUB	5810	11/21/00	7.262	nda	10.7	10.7	6.35	6.36		nda	773	800	0.018	+0.005	8.45
Monastenevin WS (Lughil)	ĸD	20	Monasterevin WS (Lughil)		NE35064	263507	206482	3 No. Springs	DUB	1468	040401	7.075	nda	10.8	10.8	6.55	6.56		nda	753	785	0.02	0.016167	8.159
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		NE18394	201050	220447	Bore	DUB	3715	11/21/95	7.31		nda		nda			nda	574		0.54	0.013	0.05
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		N818394	201050	220447	Bore	DUB	2954	08/23/96	7.16		nda		nda			nda	624		0.078	0.009	0.084
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		N818394	281850	239447	Bore	DUB	4101	11/21/96	7.25		nda		nda			nda	5.76		0.137	0.015	0.062
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		N818394	201050	220447	Bore	DUB	4710	12/09/97	7.23		nda		rda			nda	557		0.134	0.012	0.1
Newtown / Kilcock WS	ND ND	22	Newtown / Kilcock WS		NE1E394	281850	239447	Dom:	DUR	2450	021156	7.24		nda ada		rda			nda	5.00		0.163	0.013	-0.027
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		NE18284	201050	239447	Bore	DUB	94	01/13/99	7.3	nda	11.0	9.5	rda	7.2	64.5	nda	542	rda	0.17	0.015	0.021
Newtown / Kilcock WS	ĸD	22	Newtown / Kilcock WS		NE18394	201050	239447	Dore	DUB	2792	09/21/99	7.3	nda	13.9	13.9	nda	3		nda	535	648	0.058	0.011	0.127
Newtown / Kilcock WS	KID	22	Newtown / Kilcock WS		N818394	201050	239447	Dore	DUB	692	02/07/00	7.19	nda	11.3	11.3	nda	3.52		nda	589	633	0.14	0.015	0.07
Newtown / Kilcock WS	ĸD	22	Newtown / Kilcock WS		N818294	201050	230447	Bore	DUB	5793	11/20/00	7.16	nda	12.7	12.7	0.41	0.41		nda	611	624	0.172	0.103011	0.042
Newtown / Kilcock WS	ĸD	22	Newtown / Kilcock W/S		N818394	281850	230447	Dore	DUB	1377	04/03/01	7.183	nda	12.7	12.7	3.63	3.63		nda	622	645	0.08	0.007104	0.142
Polardstown Fen	KID	23	Pollardstown Fen	Pollardstown Fen	N773154	277282	215459	Spring	DUB	3714	11/21/95	7.34		nda		nda			nda	672		+0.005	0.012	2.04
Polardstown Fen	KID	23	Pollardstown Fen	Pollardstown Fen	N773154	277282	215459	Spring	DUB	2957	08/23/96	7.24		nda		nda			nda	6.79		+0.01	0.011	2.933
Polardelown Fen	KID	23	Pollardstown Fen	Pollardatown Fen	N773154	277282	215459	Spring	DUB	4105	11/21/96	7.3		nda		rda			nda	601		+0.01	0.004	2.932
Polardezown Fen	ND ND	23	Polastatown Pen	Poladatown Fan	N/73154	277262	215459	Spring	DUR	4332	110407	7.28		nda ada		rda			nda	500		-0.01	0.017	2.87
Polardalown Fen	KID	23	Polandatown Fen	Polandatown Fen	N773154	277282	215459	Saring	DUB	2151	090858	7.30		rda		rda			nda	602		40.01	0.0129	3.095
Polardalown Fen	KID	23	Pollardatown Fen	Polandatown Fen	N773154	277282	215459	Saring	DUB	2151	090858	7.33		rda		rda			nda	602		40.01	9.011	3.1
Polardatown Fen	KD	23	Pollardstown Fen	Polardstown Fen	N773154	277282	215459	Spring	DUB	89	01/13/99	7.33	nda	9.6	9.6	nda	6.17	56	nda	558	nda	+0.01	0.014	2.845
Polardstown Fen	KID	23	Pollardstown Fen	Pollardstown Fen	N773154	277282	215459	Spring	DUB	2795	09/21/99	7.43	nda	11.3	11.3	nda	7.5		nda	607	723	-0.01	0.011	2.963
Polardatown Fen	ĸD	23	Pollardstown Fen	Polardstown Fen	N773154	277282	215459	Spring	DUB	722	02/09/00	7.42	nda	9.9	9.9	nta	8.72		nda	632	710	+0.01	0.007	2.85
Polardatown Fen	ĸD	23	Pollardstown Fen	Pollardstown Fen	N773154	277282	215459	Spring	DUB	5796	11/20/00	7.198	nda	9.9	9.9	3.68	3.68		nda	681	697	-0.01	0.075726	2.757
Polardatown Fen	ĸD	23	Pollardstown Fen	Pollardstown Fen	N773154	277282	215459	Spring	DUB	1380	04/03/01	7.319	nda	10.2	10.2	7.25	7.25		nda	677	703	-0.01	0.005054	2.974
Clogherinkoe WS	KID	40	Clogherinkoe WS		N658387	265500	239000	Bore	DUB	2955	08/23/96	7.36		nda		nda			nda	608		+0.01	0.059	1.333
Clogherinkoe WS	KID	40	Clogherinkoe WS	Cie;	gherinicoe N858387	255500	239000	Done	DUB	4102	11/21/96	7.38		nda		nda			nda	615		+0.01	0.047	2.302
Clopherinkoe WS	KD KD	40	Clopherinkoe WS		N658387	265500	239000	Bore	DUB	4367	11/05/97	7.41		nda		nda			nda	524		0.012	0.048	2.133
Cooperative WS	ND ND	40	Cloghermore WS		N658387	200500	239000	and the second s	DUB DUB	4/11	120200	7.4		nca		nta			nca	504		-0.04	0.047	2.483
Clopherinkoe W ⁴	KID	40	Clopherinkoe WK		NUMBER 7	20000	229000	Bore	DUR	3168	09/02/56	7.37		nda		nte			nda	541		+0.01	0.049	2.1
Clopherinkoe WS	KID	40	Clophetinkoe WS		N658387	265500	239000	Bore	DUB	93	01/13/99	7.39		10.8		nda			nda	547		-0.01	0.045	3.592
Clopherinkoe WS	KID	40	Clopherinkoe WS		N658387	265500	239000	Bore	DUB	2793	09/21/99	7.29	nda	11	11	nda	3.0		nda	548	663	+0.01	0.058	1.929
Clopherinkoe WS	ĸD	40	Clogherinkoe WS		N658387	265500	239000	Dore	DUB	693	02/07/00	7.28	nda	10.8	10.8	nda	6.41		nda	580	653	0.02	0.049	2.43
Clopherinkoe WS	KD	40	Clogherinkoe WS		N658387	265500	239000	Bore	DUB	5794	11/20/00	7.425	nda	10.4	10.4	nda	3.91		nda	620	637	0.01	0.119055	2.185

Clopherinkoe WS	KD	40	Clogherinkoe WS		N658387	265500	239000	Dore	DUB	1378	04/03/01	7.292	nda	10.8	10.8	2.97	2.97		nda	619	646	+0.01	0.045382	2.235
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	3046	08/27/96	6.92		nda		nda			nda	700		+0.01	0.018	4.401
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)	HarePark,C	Currag N770115	277011	211522	Dore	DUB	4103	11/21/96	7.24		nda		nda			nda	790		+0.01	0.01	4.327
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	4369	11/05/97	7.25		nda		nda			nda	694		+0.01	0.008	3.972
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Bore	DUB	694	02/12/98	7.25		nda		nda			nda	719		+0.01	0.01	4.298
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	3164	09/09/98	7.21		nda		nda			nda	707		+0.01	0.022	5.693
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	55	01/12/99	7.375	nda	10.4	10.4	nda	8.33	76.7	nda	675	nda	+0.01	0.010115	4.404
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Bore	DUB	2772	09/23/99	7.14	nda	11.1	11.1	nda	8.7		nda	708	876	+0.01	0.015	4.918
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	694	02/07/00	7.21	nda	10.5	10.6	nda	8.9		nda	736	831	+0.01	0.005	4.43
Hare Park (Curragh Camp)	KD	42	Hare Park (Curragh Camp)		N770115	277011	211522	Dore	DUB	1471	04/04/01	7.205	nda	10.7	10.7	9.25	9.26		nda	828	876	0.02	0.011823	5.085
McDonagh(Curragh Camp)	KD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	3047	08/27/96	7.16		nda		nda			nda	744		+0.01	0.127	5.638
McDonagh(Curragh Camp)	KID	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Done	DUB	4104	11/21/96	7.84		nda		nda			nda	687		+0.01	0.282	4.835
McDonagh(Curragh Camp)	KD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	4712	12/09/97	7.83		nda		nda			nda	595		0.015	0.012	4.597
McDonagh(Curragh Camp)	KID	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Done	DUB	693	02/12/98	7.76		nda		nda			nda	601		+0.01	0.012	4.595
McDonagh(Curragh Camp)	KD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	3150	09/08/98	7.69		nda		nda			nda	624		+0.01	0.0133	5.218
McDonagh(Curragh Camp)	KD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	56	01/12/99	7.87	nda	9.0	9.8	nda	12.31	113	nda	597	nda	+0.01	0.011822	4.825
McDonagh(Curragh Camp)	KID	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Done	DUB	2773	09/20/99	7.61	nda	10.6	10.6	nda	11.0		nda	621	730	+0.01	0.011	5.248
McDonagh(Curragh Camp)	KD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	695	02/07/00	7.76	nda	10.4	0.4	nda	12.1		nda	640	720	+0.01	0.01	4.04
McDonagh(Curragh Camp)	ĸD	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Dore	DUB	5795	11/20/00	7.785	nda	9.9	9.9	nda	11.90		nda	648	707	+0.01	0.08722	4.875
McDonagh(Curragh Camp)	KID	50	McDonagh(Curragh Camp)	McDonagh Pump Stn	N788117	270014	211735	Done	DUB	1379	04/03/01	7.695	nda	10.4	10.4	12.22	12.22		nda	687	717	0.02	0.011522	5.309
Martinatown	KD	72	Martinatown		N773064	277283	206406		DUB	4713	12/09/97	7.24		nda		nda			nda	730		0.023	0.018	10.528
Osborne Lodge	ĸD	74	Osborne Lodge		N756147	275579	214671		DUB	2956	08/23/96	7.15		nda		nda			nda	641		+0.01	0.007	1.412
Monasterevin WS BH No.1 & Spring)	KID	80	Monasterevin WS BH No.1 & Spring	g) Balykely	N541125	254100	212000		DUB	4331	11/04/97	7.28		nda		nda			nda	707		+0.01	0.007	5.845
Monasterevin WS BH No.1 & Spring)	ĸD	80	Monasterevin WS BH No.1 & Spring	p) Balykely	N541125	254100	212600		DUB	651	02/11/98	7.29		nda		nda			nda	689		+0.01	=0.005	5.979
Monasterevin WS(spmg+Bore1+2)	ĸD	80	Monasterevin WS(sprng+Bore1+2)		5642125	254230	212502		DUB	3201	10/11/99	7.22	nda	11.2	11.2	nda	nda		nda	740	954	+0.01	0.005	8.05
Monasterevin WS(spmg+Bore1+2)	KD	80	Monasterevin WS(sprng+Bore1+2)		5542125	254230	212502		DUB	723	02/09/00	7.19	nda	10.9	10.9	nda	5.11		nda	878	900	+0.01	0.007	7.23

Nitrate (mgil N	Nitrate (mgil NO)	Nibile (mgil N	akalinity(ngi	Chloride (mg/ICI)	Flouride (mg/IF)	TOTL_HARD(mgI)	Ca_hardness	Faecal_Coliform	Sulphate (mg1 5)	Sulphide (mgil 5)	Sodium (mgil Na)	Potassium (mgll)	Magnesium (mgil)	Copper (mgil Cu)
7.34	32.50152	nda	318	17.38	nda	nda	nda	nda	16.2	nda	7.67	193	13.84	nda
nda	23.74*	nda	302	17.87	nda	nda	nda	nda	12.7	nda	8.04	1.68	12.1	nda
nda	38.13*	nda	316	18.1	nda	nda	nda	nda	14.12	nda	7.09	2.17	92	nda
nda	35.91*	nda	314	18.429	nda	nda	nda	nda	16.089	nda	7.739	0.406	14.016	nda
nda	36.31'	nda	289	17	nda	nda	nda	nda	11.9	nda	9.5	1.4	15.2	nda
nda	41.31*	nda	273	18.9	nda	nda	nda	nda	13.2	nda	10.4	11.7	13.8	nda
nda	42.02*	nda	295	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	12.13*	nda	155	13.0	nda	nda	nda	nda	10.10	nda	12.67	2.01	6.39	nda
nda	46.75*	nda	308	38.63	nda	nda	nda	nda	38.28	nda	12.19	1.61	12.23	nda
nda	43.97*	nda	310	35.85	nda	nda	nda	nda	40.55	nda	12.37	2.51	9.72	nda
nda	47.64*	nda	234	54.646	nda	nda	nda	nda	42.341	nda	20.458	192	15.154	nda
nda	63.81*	nda	308	42.0	nda	nda	nda	nda	30.7	nda	12.1	17	54.7	nda
nda	48.0*	nda	311	35.1	nda	nda	nda	nda	23.6	nda	14.0	1.8	54.7	nda
nda	51.42*	nda	303	54.0	nda	nda	nda	nda	37.5	nda	15.8	23	16.8	nda
nda	40.60*	nda	314	35	nda	nda	nda	nda	37.1	nda	15.4	2.07	15.03	nda
nda	41.00*	nda	276	33.6	nda	nda	nda	nda	30.4	nda	14.02	1.01	54.24	nda
nda	29.87*	nda	241	34.4	nda	nda	nda	-1	31.7	nda	11.6	-1	94.5	nda
nda	47.83*	nda	305	43.1	nda	nda	nda	ব	31	nda	14.87	0.55	13.86	nda
nda	14.38*	nda	202	13.4	nda	nda	nda	nda	18.7	nda	8.9	13	25.4	nda
nda	13.88*	nda	315	18.3	nda	nda	nda	nda	25.3	nda	10.2	1.4	31.2	nda
nda	15.14*	nda	334	16.34	nda	nda	nda	nda	19.7	nda	8.47	1.19	27.6	nda
nda	13.77*	nda	239	17.4	nda	nda	nda	nda	20.5	nda	8.84	1.10	25.8	nda
nda	9.85'	nda	240	13.9	nda	nda	nda	ব	19.5	nda	6.9	-1	26.2	nda
nda	14.45*	nda	310	11.08	nda	nda	nda	ব	20.2	nda	9.3	02	28.8	nda
6.27	27.76356	nda	320	19.52	nda	nda	nda	nda	57.66	nda	9.36	2.14	21.88	nda
nda	36.22*	nda	348	21.28	nda	nda	nda	nda	61.05	nda	7.88	171	30.18	nda
nda	36.09*	nda	356	21.24	nda	nda	nda	nda	64.10	nda	8.59	1.96	32.55	nda
nda	37.27°	nda	341	20.9	nda	nda	nda	nda	61.7	nda	10.4	23	31.3	nda
nda	34.45*	nda	337	24.8	nda	nda	nda	nda	77.6	nda	11.4	2.9	35.8	nda
nda	18.05*	nda	257	19.2	nda	nda	nda	শ	74.3	nda	8.2	1.4	31.4	nda
nda	29.77*	nda	350	14.12	nda	nda	nda	-1	58.9	nda	10.03	1.85	33.9	nda
nda	55.57*	nda	276	33.22	nda	nda	nda	nda	24.2	nda	10.55	1.95	12.4	nda
nda	43.31*	nda	200	29.13	nda	nda	nda	nda	21.55	nda	10.57	1.32	13.04	nda
nda	53.80*	nda	272	27.465	nda	nda	nda	nda	21.072	nda	11.4	0.731	13.834	nda
nda	56.50*	nda	274	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	58.18*	nda	258	23	nda	nda	nda	nda	21.6	nda	11.3	1.6	12.3	nda
nda	57.61*	nda	262	31.9	nda	nda	nda	nda	22.8	nda	14.5	2	94.5	nda
nda	48.62*	nda	267	37.2	nda	nda	nda	nda	26	nda	14.3	2.1	16.1	nda
nda	44.28*	nda	270	29	nda	nda	nda	nda	20.9	nda	11.79	1.53	16.87	nda
nda	44.24*	nda	325	28.4	nda	nda	nda	nda	21.4	nda	12.7	1.09	94.5	nda
nda	46.73'	nda	263	30.6	nda	nda	nda	শ	21.4	nda	10.5	ব	15.5	nda
nda	44.53*	nda	275	20.83	nda	nda	nda	শ	24.9	nda	12.49	1.78	54.18	nda
6.67	29.53476	nda	273.756	23.45	nda	nda	nda	nda	25.94	nda	11.45	1.09	14.05	nda
nda	34.27*	nda	315	25.85	nda	nda	nda	nda	25.73	nda	10.44	1.83	12.94	nda
nda	36.0*	nda	218	25.8	nda	nda	nda	nda	25.35	nda	10.57	1.85	9.17	nda
nda	34.18*	nda	318	25.731	nda	nda	nda	nda	20.232	nda	10.109	0.775	11.337	nda
nda	36.89*	nda	318	32.523	nda	nda	nda	nda	22.805	nda	10.965	1.812	12.085	nda
nda	36.89*	nda	302	23.4	nda	nda	nda	nda	23.5	nda	13.9	17	943	nda
nda	40.52"	nda	308	24.0	nda	nda	nda	nda	21.8	nda	12.7	23	12.2	nda
nda	34.10*	nda	291	24.7	nda	nda	nda	nda	25.4	nda	12.72	1.63	15.42	nda

nda	32.81*	nda	287	21	nda	nda	nda	nda	20	nda	12.03	1.04	13.07	nda
nda	37.42*	nda	279	23.1	nda	nda	nda	ત	20.7	nda	93	-1	12	nda
nda	36.13'	nda	300	15.96	nda	nda	nda	-1	23.1	rda	11.00	0.04	12.08	nda
0.13	0.57564	nda	210.665	13.69	nda	nda	nda	nda	413	nda	7.5	2.51	6.05	nda
nda	0.35'	nda	248	14.4	nda	nda	nda	nda	70	nda	7.28	2.74	5.91	nda
nda	0.27*	nda	252	10.51	nda	nda	nda	nda	41.38	nda	8.31	2.41	2.09	nda
nda	0.44*	nda	254	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	0.13*	nda	322	16.772	nda	nda	nda	nda	100.161	nda	7.226	2.209	6.794	nda
nda	10.04"	nda	220	11.0	nda	nda	nda	nda	61.7	rda	21	2.0	65	nda
nda	0.5*	nda	258	14.0	nda	nda	nda	nda	75	rda	83	25	75	nda
nda	0.55*	nda	245	12.77	nda	nda	nda	nda	50.6	nda	7.67	2.22	6.58	nda
nda	0.31*	nda	252	12.45	nda	nda	nda	nda	73.6	nda	7.82	2.26	6.57	nda
nda	0.19*	nda	244	11.5	nda	nda	nda	শ	52.4	nda	6.6	13	65	nda
ada	0.63*	nda	218	8.92	ata	nda.		-	20	nta	8.07	117	5.04	nte
2.02	12 02026		302.489	13.69	ata			-	18.97	nta	10.01	145	19.08	nta
	42.071	-									4.50			
	42.07		14					-	170		11.40			
nca	1297	nca	318	12.04	103	rea	rea	100	17.9	nda	10.14	652	18.5	nga
nda	12.71	nda	330	12.511	nda	nda	nda	nda	16.687	nda	8.762	40.01	18.875	nda
nda	12.60*	nda	322	12.8	nda	nda	nda	nda	18.5	nda	10.8	6.7	19.6	nda
nda	12.73*	nda	319	12.8	nda	nda	nda	nda	18	rda	11.6	0.7	19.6	nda
nda	12.73*	nda	319	12.8	nda	nda	nda	nda	18	rda	11.6	0.7	19.6	nda
nda	12.62*	nda	302	15.4	nda	nda	nda	nda	20.8	nda	11.8	0.9	21.4	nda
nda	13.12*	nda	290	15.85	nda	nda	nda	nda	19.78	nda	11.19	0.65	13.05	nda
nda	12.62*	nda	257	15.9	nda	nda	nda	nda	12.4	nda	10.92	6.63	13.69	nda
nda	12.21*	nda	290	12.5	nda	nda	nda	23	17.8	nda	6.9	ন	54.4	nda
nda	13.17*	nda	318	10.89	nda	nda	nda	10	20.05	nda	10.36	-1	17.65	nda
nda	5.89*	nda	300	11.4	nda	nda	nda	nda	20.7	nda	8.71	0.93	12.6	nda
nda	10.18*	nda	298	10.55	nda	nda	nda	nda	24.49	nda	10.24	2.14	8.25	nda
nda	9.43*	nda	282	17.708	nda	nda	nda	nda	25.367	nda	14.3	1.097	12.757	nda
nda	10.98*	nda	238	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	10.23*	nda	340	13.384	nda	nda	nda	nda	24.659	nda	9.45	0.67	12.625	nda
nda	9.30'	nda	209	10.3	nda	nda	nda	nda	22.9	nda	12.8	2	12.1	nda
nda	15.90*	nda	291	12.8	nda	nda	nda	nda	28.6	nda	11.9	1.1	14	nda
nda	0.59*	nda	288	11.85	nda	nda	nda	nda	22.6	nda	10.7	0.82	12.44	nda
nda	10.76*	nda	265	11.96	nda	nda	nda	nda	23.8	nda	10.53	0.75	12.44	nda
nda	9.68*	nda	285	9.5	nda	nda	nda	-1	21.6	nda	25	~1	11.5	nda
nda	9.90*	nda	272	9.13	nda	nda	nda	स	24.35	nda	10.3	4	11.5	nda
nda	19.75*	nda	322	25.24	nda	nda	nda	nda	3.58	nda	33.92	2.21	13.49	nda
nda	19.17*	nda	352	20.33	nda	nda	nda	nda	42.67	nda	17.39	2.51	11.92	nda
nda	17.58*	nda	352	23.415	nda	nda	nda	nda	34.382	nda	17.501	1.389	14.01	nda
nda	19.04*	nda	338	23	nda	nda	nda	nda	27.7	nda	21.3	2.1	4.2.1	nda
nda	25.20*	nda	325	27.1	nda	nda	nda	nda	28.5	nda	22.6	22	127	nda
nda	19.48*	nda	322	40.6	nda	nda	nda	nda	29.3	nda	28.6	25	127	nda
nda	21.78*	nda	325	27.5	nda	nda	nda	nda	24.0	nda	20.1	2.08	12.47	nda
nda	19.62*	nda	341	30.73	nda	nda	nda	nda	22.7	nda	21.53	2.09	12.59	nda
nda	22.52*	nda	330	36.5	nda	rda	nda	स	30.2	rda	23.6	0.82	15.65	nda
nda	24.97*	nda	293	18.31	nda	nda	nda	nda	5.27	nda	21.32	1.65	12.96	nda
nda	21.42'	nda	332	11.5	nda	nda	nda	nda	19.43	nda	11.82	0.78	12.7	nda
nda	20.37*	nda	332	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	20.37*	nda	320	11.1	nda	nda	nda	nda	18.9	nda	8.2	0.5	15.9	nda
nda	23.11"	nda	344	11	nda	nda	nda	nda	19.2	nda	9.1	1	16	nda

nda	21.39'	nda	310	14.7	nda	nda	nda	nda	22	nda	9.8	0.8	16.9	nda
nda	23.24*	nda	289	14.14	nda	nda	nda	nda	19.3	nda	8.28	0.58	15.88	nda
nda	21.43'	nda	322	12.37	nda	nda	nda	nda	19.78	nda	8.34	0.58	15.67	nda
nda	21.59*	nda	313	10.9	nda	nda	nda	-1	19.5	nda	7.4	0.5	54.7	nda
nda	23.77*	nda	320	9.72	nda	nda	nda	-1	18.7	nda	8.55	~1	14.85	nda
nda	46.63*	nda	352	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda	nda
nda	6.25*	nda	338	9	nda	nda	nda	nda	9.3	nda	6.24	0.71	9.8	nda
nda	25.90'	nda	330	18.378	nda	nda	nda	nda	46.514	nda	8.133	0.664	28.372	nda
nda	26.48*	nda	328	23.975	nda	nda	nda	nda	52.301	nda	8.576	1.671	28.33	nda
nda	35.65'	nda	332	21.9	nda	nda	nda	nda	75.4	nda	10.36	2.01	32.5	nda
nda	32.01*	nda	308	20.4	nda	nda	nda	nda	83.6	nda	11.07	3.63	30	nda

Calcium (mg/l Ca)	iron (mgil Fe)	Marganese (mgil
110.53	0.0113	0.0025
113.54	0.226	-0.0005
120.6	0.0633	0.002
127.451	0.067	0.007
417	0.0465	+0.0005
101.8	0.0513	0.009
nda	0.0281	-0.0005
62.6	0.0535	0.0105
135.54	0.128	0.0058
547	0.182	0.0058
546,109	40.001	0.0028
548.5	0.0067	0.0014
540.4	-0.01	0.0021
1712	0.0115	0.0025
544.5	0.0081	0.0037
540.4	-0.02	0.0042
126.5	-9.65	0.0024
136.6	-0.05	0.0024
103.3	0.0149	-0.0005
514	0.0458	0.025
1112	0.0097	0.0025
109.8	0.0201	0.0032
96.5	-0.05	0.0045
103.1	0.0698	0.0019
109.29	0.0065	0.0494
127.13	0.0525	0.0149
943.8	0.0081	0.0143
130.1	0.0142	0.0173
162	0.0063	0.0225
130.2	-0.05	0.0629
125	-0.05	0.0231
118.36	0.287	-0.0005
116	0.185	-0.0005
124.625	0.021	-0.0005
nda	0.015	0.0017
127.1	0.003	-0.0005
119.1	-0.01	-0.0005
944.7	-9.0005	0.0005
		~1005
126.2	40.02	-0.0005
112.6	-0.05	-0.001
507	-0.05	-0.001
108.28	0.0389	0.0051
523.76	0.5	0.0051
134.9	0.0194	-0.0005
136.664	0.076	0.0005
132.3	0.0048	×0.0005
123.3	0.0526	0.0001
101.7	-0.0005	0.001
128.3	0.0022	-0.0005

133.8	-0.62	+0.0005
126.3	41.05	-0.001
127.2	0.1549	0.0034
95.96	1952	0.113
124.9	5.045	0.398
94.41	1.463	0.135
nda	4.585	0.144
124.6	4.072	0.157
114.7	2.124	0.147
140.6	3.065	0.211
108.5	1.125	0.1041
121.8	1.0674	0.1205
107.4	1.6531	0.1539
104.85	1.0454	0.2133
20.43	0.144	0.0152
110.7	0.228	0.0197
120.7	0.0223	0.0047
	0.0223	
112.923	0.154	0.0138
112.7	6.223	0.006
109.2	0.1	0.0097
109.2	0.1	0.0097
130	0.111	0.0077
111.7	0.0998	0.0153
116.8	-0.02	0.0014
95.1	-0.05	0.0272
98.85	-0.05	0.0032
***	0.201	0.0736
119.1	0.0186	0.0255
110.965	+0.001	0.017
nda	0.024	0.0185
106.1	0.0083	0.0134
105.6	-9.01	0.0153
131.8	0.0097	0.0141
108.1	0.1462	0.1351
110.2	0.0316	0.0414
95.5	-0.05	0.0095
94.75	-0.05	0.0387
145.62	0.293	0.0015
101.2	0.0215	-0.0005
137.181	0.05	0.0011
136.3	0.012	+0.0005
133	0.0271	0.0059
150.3	0.0088	0.001
133.8	-0.02	-0.0005
133.33	-0.02	-0.0005
130	-0.05	-0.001
547.09	0.145	0.0015
138.8	0.155	0.001
nda	0.011	0.0018
121.2	0.0015	-0.0005
117.5	-0.01	-0.0005

140.8	0.0125	0.0005
118.4	-0.02	-0.0005
118.8	-0.02	+0.0005
95	-0.05	+0.001
102.35	-0.05	+0.001
nda	0.028	0.0029
128.6	0.929	0.0229
125.432	40.001	0.0111
121	0.0413	0.0099
150.6	-0.02	0.0156

101.4 40.02 0.0146

