Bennettsbridge Source

Extracted from: County Kilkenny Groundwater Protection Scheme, Volume II: Source Protection Zones (Draft. May 2002)

County Kilkenny Groundwater Protection Scheme

Volume II: Source Protection Zones (Draft. May 2002)

Tom Gunning, B.E., C.Eng., F.I.E.I. Director of Services Kilkenny County Council County Hall Kilkenny

Ruth Buckley and Vincent Fitzsimons Groundwater Section Geological Survey of Ireland Beggars Bush Haddington Road Dublin 4

Authors

Ruth Buckley, Groundwater Section, Geological Survey of Ireland

Vincent Fitzsimons, Groundwater Section, Geological Survey of Ireland

with contributions by:

Susan Hegarty, Quaternary Section Geological Survey of Ireland

Cecilia Gately, Groundwater Section Geological Survey of Ireland

Subsoils mapped by:

Susan Hegarty, Quaternary Section, Geological Survey of Ireland

Supervision: Willie Warren, Quaternary Section, Geological Survey of Ireland

in collaboration with:

Kilkenny County Council

Table of Contents

Sections 1 to 6 are contained within Volume I. They comprise an overall introduction, classifications of aquifers and vulnerability, and overall conclusions.

	GKUUNDWATEK QUALITY	· · · · · · · · · · · · · · · · · · ·
71	INTRODUCTION	4
7.1	SCODE	т Д
7.2	METHODOLOGY	
7.4	GROUNDWATER OCCURRENCE AND EXPLOITATION IN COUNTY KILKENNY	
7.5	INDICATORS OF GROUNDWATER CONTAMINATION	
7.6	GENERAL GROUNDWATER OUALITY ASSESSMENT OF SUPPLY SOURCES	
7.7	APPRAISAL OF WATER OUALITY ISSUES AT SPECIFIC SUPPLY SOURCES	
7.8	Conclusions	
7.9	Recommendations	
7.10) ACKNOWLEDGEMENTS	
8. B	SENNETTSBRIDGE SOURCE	
0 1		24
8.1 8.2	INTRODUCTION	
83	SUMMARY OF SOURCE DETAILS	
8.4	METHODOLOGY	
8 5	TOPOGRAPHY AND SURFACE HYDROLOGY	
8.6	GEOLOGY AND AQUIFERS	26
8.7	GROUNDWATER VULNERABILITY	
8.8	RAINFALL, EVAPORATION AND RECHARGE	
8.9	GROUNDWATER LEVELS	
8.10) GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	
8.11	WATER QUALITY	
8.12	2 AQUIFER PARAMETERS	
8.13	3 CONCEPTUAL MODEL	
8.14	DELINEATION OF SOURCE PROTECTION AREAS	
8 1 5		
0.1.	5 LAND USE AND POTENTIAL POLLUTION SOURCES	
8.16	 LAND USE AND POTENTIAL POLLUTION SOURCES	
8.16 9. (LAND USE AND POTENTIAL POLLUTION SOURCES	
8.16 9. 0	5 LAND USE AND POTENTIAL POLLUTION SOURCES	
9. C	5 LAND USE AND POTENTIAL POLLUTION SOURCES	
9.1 9.2 9.3	5 LAND USE AND POTENTIAL POLLUTION SOURCES	
9.1 9.2 9.3 9.4	 LAND USE AND POTENTIAL POLLUTION SOURCES	
9.1 9.2 9.3 9.4 9.5	5 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 37 37 37
9.1 9.2 9.3 9.4 9.5 9.6	5 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 37 37 37 37 38
8.16 9. 0 9.1 9.2 9.3 9.4 9.5 9.6 9.7	5 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 37 37 37 37 38 39
9. (9. () (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)(1) (1) (1	5 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 37 37 37 37 38 39 39 39
9. (9. (9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 37 37 37 37 38 39 39 39 40
9.1 9. 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 37 37 37 37 38 39 39 40 40 40
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 37 37 37 37 37 39 39 40 40 40 41
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 36 36 37 37 38 39 40 40 41 42
9.10 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 36 36 37 37 38 39 40 41 42 42
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 36 36 36 36 36 36 37 38 39 40 40 41 42 42 43
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15	 LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS CALLAN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER FLOW DIRECTIONS AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES 	34 35 36 36 36 36 36 36 36 36 36 36 36 36 37 38 39 39 40 40 41 42 42 43 44
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16	 LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS CALLAN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER DISCHARGE AND GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTIONS AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES 	34 35 36 36 36 36 36 36 36 36 36 37 38 39 40 40 41 42 42 43 44
9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 36 37 37 38 39 40 40 41 42 42 43 44 44 44 45
9. (9. (9. (9. (9. (9. (9. (9. (9. (9. () 9. (9. () 9. () 10. () 10. () 10. ()	 LAND USE AND POTENTIAL POLLUTION SOURCES	34 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 38 39 39 40 40 40 41 42 42 43 44 44 44 45 46
9. 6 9. 6 9. 6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 10. 10.	5 LAND USE AND POTENTIAL POLLUTION SOURCES 5 CONCLUSIONS AND RECOMMENDATIONS 5 CALLAN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER DISCHARGE AND GROUNDWATER LEVELS GROUNDWATER DISCHARGE AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS GLENMORE SOURCE INTRODUCTION LINTRODUCTION	34 35 36 36 36 36 36 36 36 36 36 36 36 36 37 38 39 40 41 42 42 42 43 44 44 45 46 46
9.1 8.16 9. 0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 10. 10.1 10.2	G LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS CALLAN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER DISCHARGE AND GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTIONS AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS GLENMORE SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION	34 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 38 39 39 40 40 40 41 42 42 43 44 44 44 45 46 46 46
9. C 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 10. 10.1 10.2 10.3	AND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS CALLAN SOURCE INTRODUCTION Location and Site Description SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER DISCHARGE AND GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTIONS AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS GROUNDWATER PROTECTION ZONES CONCLUSIONS AND RECOMMENDATIONS GLENMORE SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION	34 35 36 36 36 36 36 36 36 36 36 36 37 38 39 40 41 42 42 42 43 44 45 46 46 46 47

10.7	METHODOLOGY	. 47
10.5	TOPOGRAPHY AND SURFACE HYDROLOGY	48
10.6	GEOLOGY AND AQUIFERS	. 48
10.7	Groundwater Vulnerability	. 49
10.8	RAINFALL, EVAPORATION AND RECHARGE	. 49
10.9	GROUNDWATER LEVELS	. 50
10.10	GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	. 50
10.11	Hydrochemistry and Water Quality	. 50
10.12	Aouifer Parameters	. 51
10.13	Conceptual Model	. 52
10.14	DELINEATION OF SOURCE PROTECTION AREAS.	. 52
10.15	GROUNDWATER PROTECTION ZONES	54
10.16	LAND USE AND POTENTIAL POLILITION SOURCES	54
10.10	CONCLUSIONS AND RECOMMENDATIONS	55
10.17	CONCLUSIONS AND ALCOMMENDATIONS	
11. P	AULSTOWN SOURCE	. 56
11.1	INTRODUCTION	. 56
11.2	LOCATION AND SITE DESCRIPTION	. 56
11.3	SUMMARY OF SOURCE DETAILS	. 56
11.4	Methodology	. 56
11.5	TOPOGRAPHY AND SURFACE HYDROLOGY	57
11.6	Geology and Aquifers	. 57
11.7	GROUNDWATER VULNERABILITY	. 59
11.8	RAINFALL, EVAPORATION AND RECHARGE.	. 60
11.9	GROUNDWATER LEVELS	. 61
11.10	GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	. 61
11 11	Hydrochemistry and Water Oliality	61
11.11	A OLITEER PARAMETERS	62
11.12	Conceptual Model	63
11.13		63
		. 0.0
11.14	CROUNDWATER PROTECTION ZONES	65
11.14	GROUNDWATER PROTECTION ZONES	. 65
11.14 11.15 11.16 11.17	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES	. 65
11.14 11.15 11.16 11.17	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS	. 65 . 66 . 66
11.14 11.15 11.16 11.17 12. P	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS	. 65 . 66 . 66 . 67
11.14 11.15 11.16 11.17 12. P 12.1	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE	. 65 . 66 . 66 . 67 . 67
11.14 11.15 11.16 11.17 12. P 12.1 12.2	Delineation of Source Protection Areas. GROUNDWATER PROTECTION ZONES. Land Use and Potential Pollution Sources Conclusions and Recommendations ILTOWN / FIDDOWN SOURCE Introduction Location and Site Description	. 65 . 66 . 66 . 67 . 67 . 67
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3	Delineation of Source Protection Zones GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES Conclusions and Recommendations ILTOWN / FIDDOWN SOURCE INTRODUCTION Location and Site Description Summary of Source Details	. 65 . 66 . 66 . 67 . 67 . 67 . 67
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4	Delineation of Source Protection Areas. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES. Conclusions and Recommendations. ILTOWN / FIDDOWN SOURCE. INTRODUCTION. Location and Site Description. SUMMARY of Source Details. Methodology.	. 65 . 66 . 66 . 67 . 67 . 67 . 67 . 68
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY	. 65 . 66 . 66 . 67 . 67 . 67 . 67 . 68 . 68
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS	65 . 66 . 66 . 67 . 67 . 67 . 67 . 68 68 . 68
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY	. 65 . 66 . 66 . 67 . 67 . 67 . 67 . 67 . 68 . 68 . 68 . 68
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE.	. 65 . 66 . 66 . 67 . 67 . 67 . 67 . 68 . 68 . 68 . 68 . 68 . 69 . 70
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS	65 66 66 67 67 67 67 67 68 68 68 68 68 69 70 70
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTION AND GRADIENTS.	65 66 66 67 67 67 67 67 67 67 68 68 68 68 70 70 70
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY.	65 66 66 67 67 67 67 67 67 68 68 68 68 68 70 70 71
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12	GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE. INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS . METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY . GEOLOGY AND AQUIFERS . GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS . GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY . AOUIFER PARAMETERS	65 66 66 67 67 67 67 67 67 67 68 68 68 68 70 70 70 71 72
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13	GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS. CONCEPTUAL MODEL.	65 66 66 67 67 67 67 67 67 68 68 68 68 70 70 70 71 72 72
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14	DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES. CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE. INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY . GEOLOGY AND AQUIFERS . GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS . CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS.	65 66 66 67 67 67 67 67 67 68 68 68 68 70 70 70 71 72 72 73
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.12	Delineation of source protection Zones GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION Location and Site Description SUMMARY OF SOURCE DETAILS METHODOLOGY Topography and Surface Hydrology Geology and Aquifers GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER FLOW DIRECTION AND GRADIENTS Hydrochemistry and Water Quality Aquifer Parameters Conceptual Model Delineation of Source Protection Areas GROUNDWATER PROTECTION AND RECAS GROUNDWATER FROM DIRECTION AND GRADIENTS	65 66 66 67 67 67 67 67 67 68 68 68 68 68 68 70 70 71 72 72 73 75
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16	Delineation of source protection Areas. Groundwater Protection Zones Land Use and Potential Pollution Sources Conclusions and Recommendations ILTOWN / FIDDOWN SOURCE INTRODUCTION Location and Site Description. Summary of Source Details Methodology Topography and Surface Hydrology Geology and Aquifers Groundwater Vulnerability Rainfall, Evaporation and Recharge. Groundwater Flow Direction and Gradients. Hydrochemistry and Water Quality Aquifer Parameters Conceptual Model. Delineation of Source Protection Areas. Groundwater Protection Zones Land Use and Potential Poti Lition Sources	65 66 66 67 67 67 67 67 68 68 68 68 68 70 70 71 72 72 73 75 75
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17	Delineation of source protection Zones GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS METHODOLOGY TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY RAINFALL, EVAPORATION AND RECHARGE GROUNDWATER FLOW DIRECTION AND GRADIENTS HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS CONCEPTUAL MODEL DELINEATION OF SOURCE PROTECTION AREAS GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS	65 66 66 67 70 70 71 72 72 75 75 75 72 72 75
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13	Delineation of source protection Areas. GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION. LOCATION AND SITE DESCRIPTION SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS	. 65 . 66 . 66 . 67 . 67 . 67 . 67 . 67 . 67
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T	DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS ILTOWN / FIDDOWN SOURCE INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS. GROUNDWATER LEVELS. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES. CONCLUSIONS AND RECOMMENDATIONS.	65 66 66 67 67 67 67 67 67 67 68 68 68 68 68 70 70 70 71 72 72 73 75 76 77
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T 13.1	DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE. INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS. GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. HOMASTOWN SOURCE. INTRODUCTION.	65 66 66 67 67 67 67 67 67 67 68 68 68 68 68 68 68 70 70 71 72 75 75 77
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T 13.1 13.2	DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY GEOLOGY AND AQUIFERS . GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES. CONCLUSIONS AND RECOMMENDATIONS.	65 66 66 67 67 67 67 67 67 67 67 67 67 67 70 70 70 71 72 75 75 75 77 77 77
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T 13.1 13.2 13.3	DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY . GEOLOGY AND AQUIFERS. GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS. GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES . CONCLUSIONS AND RECOMMENDATIONS. HOMASTOWN SOURCE. INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS.	65 66 66 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 70 70 71 72 73 75 77 77 77 77 77
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T 13.1 13.2 13.3 13.4	DELINEATION OF SOURCE PROTECTION ZONES. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES. CONCLUSIONS AND RECOMMENDATIONS. ILTOWN / FIDDOWN SOURCE INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS. METHODOLOGY. TOPOGRAPHY AND SURFACE HYDROLOGY . GEOLOGY AND AQUIFERS GROUNDWATER VULNERABILITY. RAINFALL, EVAPORATION AND RECHARGE. GROUNDWATER LEVELS GROUNDWATER FLOW DIRECTION AND GRADIENTS. HYDROCHEMISTRY AND WATER QUALITY. AQUIFER PARAMETERS. CONCEPTUAL MODEL. DELINEATION OF SOURCE PROTECTION AREAS. GROUNDWATER PROTECTION ZONES. LAND USE AND POTENTIAL POLLUTION SOURCES CONCLUSIONS AND RECOMMENDATIONS. HOMASTOWN SOURCE. INTRODUCTION. LOCATION AND SITE DESCRIPTION. SUMMARY OF SOURCE DETAILS.	65 66 66 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 70 70 70 71 72 75 75 75 77 77 77 77 78 78 78
11.14 11.15 11.16 11.17 12. P 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 13. T 13.1 13.2 13.3 13.4 13.5	DELINEATION OF SOURCE PROTECTION AREAS	65 66 66 67 67 67 67 67 67 67 67 68 68 68 68 68 69 70 70 70 71 72 73 75 75 77 77 77 77 77 77 77 77 77 77 77

13.7	Groundwater Vulnerability	. 80
13.8	RAINFALL, EVAPORATION AND RECHARGE	. 81
13.9	GROUNDWATER LEVELS	. 82
13.10	GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	. 82
13.11	Hydrochemistry and Water Quality	. 83
13.12	Aquifer Parameters	. 83
13.13	Conceptual Model	. 84
13.14	DELINEATION OF SOURCE PROTECTION AREAS	. 85
13.15	GROUNDWATER PROTECTION ZONES	. 86
13.16	Land Use and Potential Pollution Sources	. 87
13.17	CONCLUSIONS AND RECOMMENDATIONS	. 87
14. U	IRLINGFORD/JOHNSTOWN SOURCE	88
14-1	Ιντροριοτίον	88
14.2	LOCATION AND SITE DESCRIPTION	, 00 88
14.2	Summary of Source Detail s	88
14.4	METHODOLOGY	89
14.5	TOPOGRAPHY AND SURFACE HYDROLOGY	89
14.6	GEOLOGY AND A OLIFERS	89
14.7	GROUNDWATER VIII NERABILITY	90
14.8	RAINFALL EVAPORATION AND RECHARGE	91
14.9	GROUNDWATER I EVELS	92
14.10	GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	. 92
14.11	Hydrochemistry and Water Quality	. 92
14.12	Aouifer Parameters	. 93
14.13	Conceptual Model	. 93
14.14	Delineation of Source Protection Areas	. 94
14.15	GROUNDWATER PROTECTION ZONES	. 95
14.16	LAND USE AND POTENTIAL POLLUTION SOURCES	. 95
14.17	Conclusions and Recommendations	. 96
15. 0	RAIGUENAMANAGH	. 98
15 1	INTRODUCTION	0.0
15.1	INTRODUCTION	, 70
15.2	SUMMADY OF SOUDCE DETAILS	08
15.5	METHODOLOGY	. 90 QQ
15.5	TOPOGRAPHY AND SURFACE HYDROLOGY	90
15.6	GEOLOGY AND A OLIFERS	99
15.0	GROUNDWATER VIII NERABILITY	99
15.8	RAINFALL, EVAPORATION AND RECHARGE.	100
15.9	GROUNDWATER LEVELS	100
15.10	GROUNDWATER FLOW DIRECTIONS AND GRADIENTS	100
15.11	Hydrochemistry and Water Quality	100
15.12	Aouifer Parameters	100
15.13	CONCEPTUAL MODEL	100
15.14	DELINEATION OF SOURCE PROTECTION AREAS	101
15.15	GROUNDWATER PROTECTION ZONES	102
15.16	LAND USE AND POTENTIAL POLLUTION SOURCES	102
15.17	CONCLUSIONS AND RECOMMENDATIONS	102
16.	ROUP SCHEME, DOMESTIC AND INDUSTRIAL GROUNDWATER SUPPLIES	1
DEFE	NICEC	~
KEFERH	LINCES	2

APPENDIX IV: Discussion of the key indicators of domestic and agricultural contamination of groundwater

APPENDIX V: Laboratory analytical results

APPENDIX VI: Summary of trends in water quality over time for selected supply sources in Kilkenny

Overall conclusions are contained within Volume I.

8. Bennettsbridge Source

8.1 Introduction

The objectives of this chapter are:

- To delineate source protection zones for the Bennettsbridge Water Supply Scheme.
- To outline the principal hydrogeological characteristics of the Bennettsbridge area.
- To assist Kilkenny County Council in protecting the water supply from contamination.

The protection zones are delineated to help prioritise certain areas around the source in terms of pollution risk to the well. This prioritisation is intended to provide a guide in the planning and regulation of development and human activities. The implications of these protection zones are further outlined in 'Groundwater Protection Schemes' (DELG/EPA/GSI, 1999).

8.2 Location and Site Description

During GSI's investigations, the Bennettsbridge public drinking water source comprised two elements; a borehole drilled into rock in 1999, and an infiltration gallery constructed in the 1960's into sands and gravels alongside the River Nore. The location of the Bennettsbridge source is shown on Map 4S and 8. Both the borehole and gallery are located in the townland of Knockanore, 5 km south of Bennettsbridge.

During GSI's investigations, water from the borehole was pumped into the infiltration gallery, which fed a pump sump beneath the nearby pump-house via a gravity main. For the summer months, the supply was augmented with water from the Nore.

There are three access manholes to the infiltration gallery set 120 m apart, and no less than 16 m back from the river's edge, with each consisting of a 1.8 m high concrete cylinder. This height of cylinder prevents inundation of the gallery by river water during most flood events. The borehole is situated about 10 m from the most southerly infiltration gallery entrance, with it's top raised 26 cm from the ground level. Although a large diameter pipe exits from the borehole, the top is not sealed around the pipe edge, and during flood events in the winter, the borehole is at risk of inundation.

Note that, since the Protection Scheme for Kilkenny was completed, the County Council have indicated that additional drilling and well-head protection works are planned for Bennettsbridge:

- Additional borehole drilling to remove the need for river water augmentation. The original arrangement whereby the borehole drilled in 1999 discharged directly into the infiltration gallery will be terminated in 2002 and all boreholes will pump directly to the pump house.
- The borehole well-heads on the river bank will be constructed so as to avoid the risk of inundation from the river.

The County Council have indicated that the planned capacity for the infiltration gallery and new well field is intended to be approximately 33,000 gallons per hour ($3600 \text{ m}^3/\text{day}$). This figure is some 30% higher than the abstraction rates quoted in Section 8.3. The County Council have indicated that the abstraction rates quoted in Section 8.3 should be used in the assessments at Bennettsbridge. However, should the planned rate be attained in the future, the size of the source protection areas delineated in this document may require re-evaluation.

	Borehole	Infiltration Gallery
GSI Well Number	2313NEW199	2313NEW237
Grid ref. (1:25,000)	25472 14451	25473 14450
Townland	Knockanore	Knockanore
Source type	Borehole	Infiltration gallery
Developed	September 1999	1960's
Owner	Kilkenny County Council	Kilkenny County Council
Elevation (ground level)	28.6 m O.D.	28.5 m O.D.
Depth	100 m	-
Depth of casing	11 m	-
Diameter	200 mm (8")	1.68 m (at entrance to gallery)
Depth to rock	10 m	unknown
Static water level	26.86 m O.D. (1.74 m b.g.l.) on	25.1 m O.D. (3.4 m b.g.l.) on
Pumping water level	-21.54 m O.D. (50.14 m b.g.l.) on 07/10/99*	Discharges via gravity feed
Drawdown	48.4 m	-
Normal consumption**	$1254 \text{ m}^{3}/\text{d}$	1552 m ³ /d
Pumping test summary:		
(i) abstraction rate	1229-1571 m ³ /d***	
(ii) specific capacity	25 m ³ /d/m	
(iii) transmissivity	$15 \text{ m}^2/\text{d}$	

8.3 Summary of Source Details

* Pumping water level could not be measured due to the depth to water and interference from rising main and power cable.

** The average scheme consumption, 2806 m³/d, has been obtained from County Council meter readings taken in 2000 and 2001. The borehole is reportedly pumped at the capacity of the pump, 1254 m³/d, and the infiltration gallery usage is obtained by deducting this from the total. *** The borehole was tested at various rates in October 1999, the longest test abstracting on average 1380 m³/d and lasting 15 days.

Note that the GSI is aware that the supply needs of the Bennettsbridge scheme are increasing. However, an examination of the test pumping drawdown data suggest that there is little scope for increasing the original borehole's yield, and that the current design yield of the borehole may not be sustainable in the long term. It has not been possible to examine trends in pumping water levels in the well or trends in abstraction rates from the well since it was commissioned in late 1999.

8.4 Methodology

8.4.1 Desk Study

Bedrock geology information was compiled from original 1:10560 (six inch) field sheets and from the GSI bedrock report for the area (Tietzsch-Tyler *et al*, 1994a). Details of the current abstraction rate were obtained from Kilkenny Council. Drilling and pumping test data for the supply wells were obtained from Brian P. Connor, the consultant involved with their development (Connor, 1999). Data on private groundwater wells in the area was taken from GSI archives and work carried out by the Groundwater section throughout the course of 2000 and 2001.

8.4.2 Site Visits and Field Work

- Site visits and fieldwork included walkover surveys undertaken by both the Groundwater (2 days) and Quaternary (1 day) sections of the GSI to further investigate the subsoil and bedrock geology, the hydrogeology, the vulnerability to contamination and the current pollutant loading.
- Groundwater Section also carried out 3 days of exploration drilling in both the bedrock and the sand and gravel components of the scheme. Two observation wells were drilled. One was installed in gravel close to the well, and one was installed in rock adjacent to the pump house (see Figure 8.1). The latter was destroyed during the drilling of a new county council borehole at the site, and measurements relate to the new County Council borehole.

- Water levels and elevations were recorded in the river, infiltration gallery, production well, gravel observation well and adjacent private well (see Figure 8.1).
- A raw water sample was taken on 02/10/00 by GSI staff and was submitted for analysis at the EPA laboratories in Kilkenny in accordance with their sampling and transportation guidelines. (see Table 8.1 for results).

8.4.3 Assessment

Analytical equations and hydrogeological mapping were utilised to delineate protection zones around the source.

8.5 Topography and Surface Hydrology

The Bennettsbridge source is located on the eastern bank of the River Nore, almost 5 km south of Bennettsbridge Town (Map 8). The Kings river flows into the Nore just 400 m to the south of the source.

At this point, the Nore lies at approximately 27 m O.D. in a narrow north-south trending valley which rises steeply to ridges on either side. These ridges separate the valley from the Ennisnag River valley to the west and the Kilfane River valley to the east. Although the inclines are steep, the crests of the hills are only up to 120 m O.D.

The valley floor is only about 160 m wide, but is almost entirely flat, with a very gentle gradient of 0.006 (1 in 160). The valley sides steepen dramatically to 0.07 (1 in 10).

The nearest streamflow gauges on the River Nore are 12 km upstream at John's Bridge in Kilkenny City and 2 km downstream at Mount Juliet. Low flows⁴ at these stations are of the order of 3.75 m^3 /sec and 4 m³/sec, respectively (EPA, 2001). A group of large springs emerge on the eastern floodplain of the Nore at Bausheenmore, approximately 3 km north of the pump house. Total flows at these springs are estimated to be in the order of 0.1 to 0.3 m³/sec. The level of the River Nore at the source was 27.3 m O.D. on 02/10/01.

The drainage density in the surrounding ridges is very low, and rock is close to the surface, suggesting that a high proportion of excess soil moisture can infiltrate down to groundwater.

8.6 Geology and Aquifers

8.6.1 Bedrock

The main rock type in the vicinity of the Bennettsbridge source is the Ballysteen Formation. The formation is present in two forms; a dolomitised and an undolomitised portion. It is described in more detail in Chapters 2 and 4 of Volume I and its distribution in the vicinity of the Bennettsbridge source is shown on Map 8.

A comparison of the production borehole log (Connor, 1999), GSI observation well drilling, and the GSI's geological map (see Map 1) suggests that:

- Approximately 30 m of shaley Ballysteen limestone overlies the dolomitised Ballysteen limestone.
- Most water flows are derived from the dolomitised Ballysteen Formation.

This is depicted schematically in Figure 8.1.

In Chapter 4 of Volume I, the undolomitised portion, through which the production borehole was drilled, has been classified as a **locally important aquifer** which is **moderately productive only in local zones** (LI). The dolomitised portion, however, has been classified as a **locally important**

⁴ Flow which is equalled or exceeded at least 95% of the time.

aquifer which is generally moderately productive (Lm). Note that $\frac{1}{2}$ km further north from the pump house, the dolomite is so well developed that the bedrock is classified as a regionally important fissured bedrock aquifer (Rf). In the Ll portion of the aquifer, flow is expected to be concentrated in the upper weathered fraction, with most groundwater movement expected within the top 10 or 15 m of the rock profile. In the dolomitised Lm portion, borehole information suggests that local groundwater circulation occurs at depths of at least 70 m (~30 m below the top of the dolomite).

In the Bennettsbridge area, the bedrock aquifers have been affected by a large north-south trending fault which is believed to follow the Nore River channel. As a consequence, a different, less productive bedrock aquifer (the Butlersgrove Formation) abuts-against the dolomite to the west of the river (Figure 8.1).

The Bennettsbridge source is situated on the southern side of a major syncline (downward fold in the rock mass) at the centre of which are the young rocks of the Slievardagh and Castlecomer Hills. As a consequence, the Ballysteen Formation dips at 5° to 6° north- westwards in the immediate vicinity of the source.

8.6.2 Subsoil

The main subsoil types are gravel, till and alluvium. These materials are described in more detail in Chapter 3 of Volume I and their distribution in the vicinity of the Bennetsbridge source is shown on Map 2S.

The gravel deposits occupy the valley floor. Drilling by the GSI indicated at least 8 m of silty SAND and GRAVEL lie below 2 m of SILT adjacent to the infiltration gallery. As described in Chapter 4 (Volume I), the gravels in this part of the Nore valley are considered to constitute a **locally important** gravel aquifer (Lg).

The till deposits are found on the valley sides (see Figure 8.1), where they form a thin covering which rarely exceeds 3 m. They are not considered an aquifer, and their main significance is in vulnerability and recharge assessments. These issues are described in Sections 8.7 and 8.8.

The alluvial deposits are recent, and are found at points along the river bank where flooding is common. Their main significance is in vulnerability and recharge assessments.

8.7 Groundwater Vulnerability

8.7.1 Introduction

The concept of vulnerability is discussed in Chapter 5 of Volume I. In essence, however, groundwater vulnerability is dictated by the nature and thickness of the material overlying the main groundwater 'target'. As discussed in Section 8.6, two groundwater resources are utilised, one in fractured bedrock and the other in the overlying sands and gravels. Where the sand and gravel aquifer occurs at the surface, the overall vulnerability will be dictated by the vulnerability of groundwater within this aquifer. On the valley sides where the sand and gravel aquifer is absent, vulnerability will be dictated by the overall subsoil permeability and by the depth to bedrock.

8.7.2 Vulnerability in Areas where the Sand and Gravel Aquifer Occurs

GSI drilling adjacent to the infiltration gallery indicated that 2 m of SILT can overly the sand and gravel aquifer at the site. It is likely however, that this silt is variable in thickness, and even absent in places. The drilling also indicated that the groundwater level lies at approximately 3 m below ground level, and that the sand and gravel aquifer is unconfined. The unsaturated zone thickness is likely to increase moving away from the river and it is therefore likely that the sand and gravel aquifer is unconfined in most areas near the infiltration gallery.

In unconfined situations, the vulnerability of a sand and gravel aquifer is dictated by the thickness of the unsaturated zone. Given that the unsaturated zone is likely to be at least 3 m thick over much of the

area upgradient of the source, the vulnerability of the sand and gravel aquifer is considered to be generally 'high' (see Map 9).

8.7.3 Vulnerability in Areas where the Sand and Gravel Aquifer is Absent

These areas are situated on the valley sides overlooking the site and groundwater vulnerability is determined by the permeability and thickness of the tills overlying the bedrock. The observation borehole drilled by the GSI at the pump house hit rock at 1.8 m below ground, indicating that the subsoil deposits thin rapidly on the valley sides. In addition, there are at least two mapped rock outcrops in excess of 200 m long, and subsoils are therefore thought to be generally less than 3 m thick. At subsoil thicknesses of less than 3 m, bulk permeability becomes less relevant in mapping vulnerability across wide areas (as opposed to specific sites), because permeability becomes increasingly variable and increasingly influenced by the presence of 'bypass flow' mechanisms such as cracks in the subsoil. Accordingly, on the basis of the general depth to bedrock on the valley sides, a vulnerability classification of 'extreme' has been assigned.

8.7.4 Summary

Groundwater vulnerability is generally 'high' on the valley floor and generally 'extreme' on the valley sides.

Note that the permeability estimations are based on regional-scale evaluations, while depth to rock and water level interpretations are based on the available data cited here. However, permeability, water level and particularly depth to rock can vary over a very small scale. Consequently, the vulnerability mapping provided will not be able to anticipate all the natural variation that occurs in an area. The mapping is intended only as a guide to land use planning and hazard surveys, and is not a substitute for site investigation for specific developments. Classifications may change as a result of investigations such as trial hole assessments for on-site domestic wastewater treatment systems. The potential for discrepancies between large scale vulnerability mapping and site-specific data has been anticipated and addressed in the development of groundwater protection responses (site suitability guidelines) for specific hazards. More detail can be found in 'Groundwater Protection Schemes' (DELG/EPA/GSI, 1999).

8.8 Rainfall, Evaporation and Recharge

The term 'recharge' refers to the amount of water replenishing the groundwater flow system. Recharge is generally estimated on an annual basis, and is assumed to consist of an input (i.e. annual rainfall) less water losses (i.e. annual evapotranspiration and runoff). The estimation of recharge is critical in source protection delineation as, in combination with abstractions and overflows at the source, it largely dictates the size of the zone of contribution.

In areas where point recharge from sinking streams, etc, is discounted, the main parameters involved in recharge rate estimation are annual rainfall, annual evapotranspiration, and annual runoff⁵:

- Annual rainfall: 890 mm (Met Eireann average annual (1961-90), average of rainfall measured at Bennettsbridge, Stoneyford and Thomastown).
- Annual actual evapotranspiration (A.E.) losses: 450 mm. This figure ('actual evapotranspiration') was calculated assuming 95% of the country-wide potential evapotranspiration data presented in the "Agroclimatic Atlas of Ireland" (Collins and Cummins, 1996). Local measurements of actual evapotranspiration are not available.
- Potential recharge: 440 mm/year, based on average annual rainfall less estimated evapotranspiration.

⁵ Estimations used in this report have generally been rounded off to two significant figures

• Annual runoff losses (RO): 90 mm. This estimation is based on the assumption that, due the predominance of either thin or permeable subsoils over much of the area upgradient of the source (refer to Section 8.7), only 20% of the potential recharge will be lost to overland flow and soil quickflow. Losses of 20% are typically used by the GSI in similar areas.

These calculations are summarised below:

Average annual rainfall (R)	890 mm
Estimated A.E.	450 mm
Potential recharge $(R - A.E.)$	440 mm
Runoff losses (RO)	90 mm
Estimated actual recharge (R-A.E.) – (RO)	350 mm

8.9 Groundwater levels

Information on the groundwater levels in the two aquifers comes from measurements taken as part of this study from the abstraction points and also from two GSI drilled observation holes. The following two tables outline the findings:

Gravel aquifer:

Measurement Point	Infiltration Gallery	Observation Borehole	River
Distance from river	16 m	9.5 m	-
Measured water level	3.3 m b.g.l. (25.2 m O.D.)	3 m b.g.l. (25.6 m O.D.)	27.3 m O.D.

Dolomitised limestone aquifer:

Measurement Point	Private Well	Test Borehole	Pumping Well	River
Distance from river	184 m	73 m	9.2 m	-
Measured water level	22.54 m b.g.l. (24.06 m O.D)	4.7 m b.g.l. (24.5 m O.D)	53.7 m b.g.l. (-21.54 m O.D)	27.3 m O.D.

The measurements taken in the sand and gravel aquifer show a gentle downward gradient from the river towards the infiltration gallery. The measurements for dolomitised limestone aquifer indicate that the aquifer has a low bulk permeability - the pumping water level is very deep compared to the water level in a borehole less than 70 m away and compared to the water level in the gravel aquifer above. The water levels also indicate that the dolomitised aquifer is generally confined on the valley floor and lower valley sides.

8.10 Groundwater Flow Directions and Gradients

The water table in the area is assumed to reflect topography, with groundwater flowing from the hills and valley sides, and discharging into the Nore at the base of the valley.

In three dimensions, the flow pattern is probably somewhat different in the undolomitised and dolomitised portions of the aquifer, and the proposed flow regime is shown in schematic form in Figure 8.1. It seems likely that water recharging the undolomitised limestone travels at shallow depths (possibly within 15 m of the top of the rock) before discharging into the Nore and the sand and gravel alongside it. In the dolomitised portion, however, drilling data from the site (Connor, 1999) suggests significant water strikes can occur more than 70 m below the top of the rock (~ 30 m below the top of the dolomite). It is therefore likely that recharge to this aquifer is <u>not</u> controlled by local subcatchment watersheds and that groundwaters supplying the source can be recharged from the area 2 km to the east where the dolomitised limestone outcrops at surface (refer to Map 8).

Given that pumping water levels in the borehole are much lower than the water levels in the gravels and in the river, it is likely that the dolomitised aquifer is recharged to a significant degree by vertical leakage from the river, the gravel aquifer, and the upper shaley limestone aquifer.

Groundwater gradients in the sand and gravel aquifer have been calculated using water level readings in the observation borehole in the sand and gravel and the infiltration gallery. The calculated gradient is 0.14 (1 in 7) from the river towards the infiltration gallery. Though no data is available for the gravels up-slope of the gallery, it is likely that a component of flow will also be from the valley sides to the gallery.

A groundwater gradient of 0.02 (1 in 50) has been calculated in the dolomitised limestone using water level readings in two observation boreholes. Closer to the pumping well the gradient increases dramatically, probably in the order of 0.7 (1 in 1.4). The groundwater gradient in the undolomitised portion is likely to mimic the topographic gradient of 0.07 (1 in 10).

8.11 Water Quality

Data on recent trends in water quality at the Bennettsbridge source are presented in Appendix V and are summarised graphically in Figure 8.2. It should be noted that the borehole only came on line in November 1999, and that data prior to this date only apply to the infiltration gallery. Also, water is abstracted from the Nore to augment the supply in the summer months.

The following key points have been identified from the data:

- *Hardness:* Only one data point is available (from GSI sampling in October 2000) The result suggests the groundwater has a 'very hard' (>350 mg/l CaCO₃) calcium-bicarbonate hydrochemical signature. This is typical of the limestone lowlands of the Irish midlands.
- *Faecal coliforms:* Of the five available raw⁶ water samples from the <u>infiltration gallery or</u> <u>mixed waters</u> since 1994, all show some counts of faecal coliforms. Note, however, that of these five samples, only one is available in combination with <u>a separate raw water sample</u> from the borehole. Analysis of this one borehole sample is presented in comparison with raw water samples from the bore and the river in Table 8.1. A count of 5600 faecal coliforms per 100 ml was found in the sample from the river, while no faecal bacteria were detected in the borehole supply. Given that the river is thought to recharge the lower dolomitised aquifer as well as the upper sand and gravel aquifer, this suggests that significant contaminant attenuation occurs vertically between the gravels and the dolomitised limestone bedrock. The data also suggests that the most likely cause of the bacterial pollution in the Bennettsbridge mixed source is the River Nore. In winter, the river can rise above the level of the borehole, entering it via the unsealed top. Though no data are available for flood periods, it is likely that the borehole is contaminated with faecal coliforms for at least the period of inundation.
- *Other contaminant indicators*: Only one raw water sample is available from the borehole itself. Concentrations of nitrate, ammonia and chloride are below GSI guide levels in the borehole sample.
- Water quality data from the borehole and river are compared in Table 8.1. The elevated groundwater temperature of 12.9 °C, taken during early autumn, provides qualitative evidence that the proportion of river water in the recharge to the borehole is significant. Additional, quantitative estimates of the proportion of river water recharging the borehole can be made from nitrates and chlorides, which are not expected to be attenuated significantly by materials below the river. Assuming the Bausheenmore springs are representative of typical nitrate and chloride concentrations in the dolomitised Ballysteen limestone (refer to Section 7.5.3), the groundwater contribution to the Bennettsbridge borehole is typically 25 mg/l nitrate (NO₃) and 30 mg/l chloride. Taking equivalent borehole and river water concentrations from Table 8.1, a river contribution of 40% of the total borehole abstraction is required to dilute regional groundwater concentrations to those found in the borehole.

⁶ Raw water samples are taken <u>prior to treatment</u>. Assessments are aimed at identifying contamination hazards rather than direct human health issues.

	Results of EPA Laboratory Analyses (samples taken 2/10/00)		
Parameter	Borehole Sample	River Sample	Mixed Sample ⁷
Conductivity (µS/cm)	721	447	681
Temperature (°C)	12.9	13.2	
pН	7.3	8	7.4
Total Hardness	424	255	390
Total Alkalinity (mg/l)	317	185	291
Calcium	128	89	124.4
Magnesium	25.4	7.8	19.2
Chloride	24	16	23
Sulphate	28.5	15.8	23
Sodium	16.1	10.3	16.7
Potassium	2.3	4.4	3.3
Nitrate (as NO ₃)	19	9.3	19.9
Iron	< 0.05	0.279	< 0.05
Faecal coliforms / 100 ml.	None detected	5600	5

 Table 8.1: Selected Laboratory Analyses of Groundwater at the Bennettsbridge Source

The natural hydrochemistry of the Ballysteen aquifer systems is discussed in Chapter 4 of Volume I.

8.12 Aquifer Parameters

The main aquifer parameters of significance are permeability and porosity. Together with groundwater gradients, these parameters are used to estimate the extent of the inner source protection area in Section 8.14.3).

Dolomitised limestone: A discharge test in October 1999 of between 1571 and 1229 m^3/day for 2 days gave a final drawdown of 48.4 m, and a specific capacity of 25 $m^3/day/m$ (see Section 8.3). Recovery was not measured as the borehole was put into commission immediately and has been pumped constantly ever since. Analysis of the drawdown pattern during pumping provided a transmissivity estimate of 15 m^2/d . Close to the end of the second day of the pump test described above, a second borehole, located at the other end of the infiltration gallery began pumping at 440 m^3/day . Both wells pumped together for a further 12 days. The yield obtained from the second borehole was not considered sufficient for the needs of the scheme and it was abandoned. An additional trial well was drilled at the site in 2001, but was also found to be inadequate. Clearly, flow and aquifer parameters in the aquifer are quite variable, but the available data suggest that both the transmissivity and permeability at depth in the aquifer are quite low.

Shaley limestone: Data from a well in shaley Ballysteen limestone near Mount Juliet (reference 2313NEW170) suggest a specific capacity of 14 $m^3/day/m$ and a transmissivity of 32 m^2/d and a permeability of 3.2 m/day for this aquifer in the vicinity of the source. The permeability was derived assuming a minimum aquifer thickness of 10 m and is therefore likely to be at the higher end of typical bulk permeabilities in the aquifer.

A porosity of 0.025 has been assumed for the bedrock aquifers. This is at the upper end of the typical range used by the GSI for bedrock aquifers (0.025 to 0.01) and reflects the belief that the aquifers are densely fractured in the vicinity of the fault zone which runs along the River Nore.

⁷ *Taken from the mixed gallery and borehole discharge just prior to treatment.*

The average abstraction rate for the borehole is estimated as approximately 1250 m³/d. Additional safety factors are considered inappropriate given that the borehole appears to close to its maximum yield. The average discharge from the infiltration gallery is estimated as approximately 1550 m³/day (see Section 8.3).

The boundaries of the analytical model were taken from hydrogeological mapping and the conceptualisation outlined in Section 8.13, and were as follows:

	Infiltration Gallery	Borehole
Northern boundary	Ridge of higher ground overlooking the bank of the Nore, 0.3 km north of site.	Ridge of higher ground overlooking the bank of the Nore, 0.3 km north of site.
Southern boundary	Ridge dividing catchment from valley to the south, 0.1 km from the site.	Ridge dividing catchment from valley to the south, 0.1 km from the site.
Eastern boundary	Local topographic divide: Hill crest in Rathduff townland, 1.8 km east of the site.	Regional topographic divide running across the outcrop area of dolomitised Ballysteen limestone, 4 km from the borehole.
Western boundary	River Nore	River Nore
Total area	1.2 km^2	1.3 km^2

These boundaries delineate the physical limits within which the ZOC is likely to occur and are shown on Maps 8, 9 and 10. Some additional calculations can be performed to assess if the ZOC for the Protection Scheme should be smaller or larger than the area contained within the physical constraints:

• Water balance: The area required to balance the total abstraction with rainfall recharge is: Recharge area required to sustain discharge = discharge \div average annual depth of recharge. Recharge area required to sustain discharge = ((1550 + 1250) × 365) \div 0.35 Recharge area required to sustain discharge = 2.9 km² Total area available = 1.3 km² + 1.2 km² = 2.5 km²

In other words, the area contained within the physical constraints under-estimates the groundwater recharge required to balance abstraction by a shortfall of 15%. However, significant river recharge is anticipated in the conceptual model. Using a chemical mass balance, river recharge has been estimated to make up 40% of the abstraction at the borehole, and, by inference, more than 40% of the abstraction at the gallery. Clearly, river recharge will be more than sufficient to make up the shortfall in the water balance, which amounts to only 0.1% of low flows in the Nore close to Bennettsbridge.

• *Width of ZOC at the local topographic divide 1.8 km east of the site*: The ZOC at this location approximates the upgradient limit of recharge waters feeding the infiltration gallery. It can be estimated using the "uniform flow equation", as follows:

Width = 2 × abstraction \div (permeability × thickness × hydraulic gradient) = 2 × 1600 \div (10 × 10 × 0.06) = 530 m

The equivalent figure using physical constraints alone is 800 m. Thus, it appears that the figure derived from the physical constraints represents a reasonable, if slightly conservative approximation of the upgradient width of the ZOC for the infiltration gallery.

• *Width of ZOC at the River Nore*: Evidence from water levels (Section 8.9) suggests that the width of the upgradient cone of depression of the borehole is less than 65 m. This compares with a southern boundary distance of 100 m derived from the physical constraints. The northern boundary is extended further than 100 m to account for the width of the gallery.

In summary:

• The physical constraints are generally appropriate to utilise as the boundary of the ZOC.

- River recharge is thought to make up a significant proportion of the total recharge to the source and, on this basis, the mapped ZOC is slightly conservative.
- The ZOC delineated in Map 10 comprises the ZOC for both the gallery and the borehole.

8.14.3 Inner Protection Area

The Inner Protection Area (SI) is the area defined by a 100 day time of travel (TOT) to the source from a point below the water table and it is delineated to protect against the effects of potentially contaminating activities which may have an immediate influence on water quality at the source, in particular from microbial contamination.

Estimations of the extent of this area cannot be made by hydrogeological mapping and conceptualisation methods alone. Analytical modelling was therefore used to estimate the extent of this zone upgradient of the well. Note that only the sand and gravel and shaley aquifers were considered in terms of the inner protection area. This is because, close to the source, waters reaching the deeper dolomite aquifer would first have to percolate through the weathered and unweathered zones of the shaley limestone.

Subject to certain assumptions and conditions, Darcy's Law can be used to approximate groundwater flow velocities, as follows:

Velocity = *groundwater gradient* × *permeability* ÷ *porosity*

Using the estimates derived in Sections 8.12 and 8.10 for gradient, permeability, and porosity (0.07, 3.2 m/day, and 0.025 respectively), the equation gives a velocity of 9 m/day. This could be treated as a 'reasonable worst case estimate'. In other words, though some very rapid flow paths may occur, it is thought that most groundwater will move up to 900 m in 100 days. Accordingly, the boundary of the SI has been delineated 900 m upgradient of the source (refer to Map 10).

8.14.4 Groundwater Protection Zones

The groundwater protection zones are obtained by integrating the source protection areas and vulnerability categories – giving a possible total of 8 source protection zones (see the matrix in the table below). In practice, this is done by superimposing the vulnerability map on the source protection area map. Each zone is represented by a code, e.g. **SI/H**, which represents an <u>Inner Source Protection</u> <u>area</u> where the groundwater is <u>highly</u> vulnerable to contamination. All of the hydrogeological settings represented by the zones may not be present around any given source. Just three groundwater protection zones are present around the Bennettsbridge source (Map 10), as shown in the matrix below.

VULNERABILITY	SOURCE PROTECTION	
RATING	Inner	Outer
Extreme (E)	SI/E	SO/E
High (H)	SI/H	not present
Moderate (M)	not present	not present
Low (L)	not present	not present

The appropriate responses imposing restrictions on development are presented in the document 'Groundwater Protection Schemes' (DELG/EPA/GSI, 1999).

8.15 Land Use and Potential Pollution Sources

Agriculture in the area is mainly based on livestock.

Though a significant proportion of contaminants found in the source are expected to be derived from the River Nore, some are also likely to be derived from inorganic fertilisers and/or the disposal and management of organic wastes.

8.16 Conclusions and Recommendations

- It is unlikely that the bedrock aquifers will provide water supplies at the site that are significantly greater in the long term than those provided currently. Pumping water levels at the production borehole are deep and river recharge is required to balance abstraction. It may be that the current supply from the borehole will not be sustainable through future dry summers. Regionally important aquifers lie within 1.5 km of the north and south of the site. These might be explored if future increases in supply were needed or if an alternative to direct intake from the river is sought.
- The groundwater around the supply is 'highly' to 'extremely' vulnerable to contamination. Further, the well-head is vulnerable to surface water inundation during flooding of the River Nore.
- The available data suggest that the gallery supply is contaminated by river water and by groundwater contamination (possibly due to the disposal and handling of agricultural organic wastes) from the valley floor and sides. There is insufficient data from the production borehole to indicate whether this source is also contaminated, but some contamination is likely during floods which inundate the borehole.
- The protection zones delineated in this chapter are based on our current understanding of groundwater conditions and on the available data. Additional data obtained in the future may indicate that amendments to the boundaries are necessary.
- It is recommended that:
 - chemical and bacteriological analyses of raw water as well as treated water be carried out regularly. Given some of the raw water quality issues at the source, a monthly frequency has been recommended in Section 7.9. The chemical analyses should include all major ions
 calcium, magnesium, sodium, potassium, ammonium, bicarbonate, sulphate, chloride, and nitrate. More occasional analyses of other parameters such as pesticides and hydrocarbons is also recommended;
 - sampling include separate waters from the borehole and the gallery, as well as the final mixed water;
 - the potential hazards in the ZOC be located and assessed;
 - the flow data from the borehole be examined regularly to identify decreases in yield which may be the result of dropping water levels.
 - the pumping borehole be protected from inundation by the river.
- The planned groundwater abstraction at Bennettsbridge is greater by some 30% than the current abstraction figures used in this document. The abstraction rate is a key factor in determining the size of protection zones around a source. The County Council indicated that the current abstraction rate should be used in the assessments at Bennettsbridge. However, should the planned rate be attained in the future, the size of the source protection areas delineated in this document may require re-evaluation.

Map 9 Vulnerability of Source Protection Areas

Bennettsbridge PSS

COUNTY KILKENNY GROUNDWATER PROTECTION SCHEME

MAP 10 SOURCE PROTECTION ZONES

This Several Protection Zene map is designed for general information and strategic planning usage. The boundaries are based on the available evidence and local details have bein generatived to the map social. Traduction of specific sites and concretences will normally require further and more detailed expressement and will the specific sites and concretences will normally require further and more detailed assessments and will be the specific sites and concretences will normally require further and more detailed assessments and will be specific sites and concretences will normally require further and more detailed assessments and will be specific sites and concretences and the specific site of the specific sites and the specific sectors and the specific sites and the specific sectors and the specific sect

The map is intended for use in conjunction with groundwater protection responses for potentially policiting activities, which late the degree of acceptability of these activities in each zone and describes the control measures recovery to pre-eff policition.

> Project Hydrogeologists : Ruth Buckley & Cecilia Getely Project Manager : Vincent Fitzsimons Digital Map Production : Marie Hogan

topographic base is reproduced with the permission of the Ordnance Burvey of Inlan

Map 10 Source Protection Zones

References

An Foras Forbatha. 1977. The South Eastern Water Resource Region. Summary of Hydrometric Records.

Archer, J.B., Sleeman, A.G. and Smith, D.C. (1996). Geology of Tipperary. A geological description of Tipperary and adjoining parts of Laois, Kilkenny, Offaly, Clare and Limerick, to accompany the Bedrock Geology 1:100,000 scale map series, Sheet 18, Tipperary. With contributions by K. Claringbold, G. Stanley (Mineral Resources) and G. Wright (Groundwater Resources). Geological Survey of Ireland.

Ball, D.M., (1972). A Short Field and Desk Study of the King's River Catchment, the Republic of Ireland. Unpublished MSc thesis. University College London.

Bates, R.L. and Jackson, J. A. (1984). Dictionary of Geological Terms: Third Edition. Prepared by the American Geological Institute. Published by: Anchor Books.

British Standards Institution. 1999. BS 5930:1999, Code of practice for site investigations. British Standards Institution, London.

Buckley, R. (1999). A Comparison of Different Approaches to Groundwater Vulnerability Mapping in Karst Areas. Unpublished MSc thesis. Environmental Sciences Unit, Trinity College Dublin.

Burdon, D. J. (1983). Irish Groundwater Resources in Relation to Geothermal Energy Investigations. Unpublished Geological Survey of Ireland Report.

Burke, A.M. (1998). Assessing Karstification in Ireland. Unpublished (Research) MSc thesis. Department of Geography, Trinity College Dublin.

Cawley, A. (1990). The Hydrological Analysis of a Karst Aquifer System. Unpublished (Research) MSc thesis. Department of Engineering Hydrology, University College Galway.

Collins, J.F. and Cummins, T. (1996). Agroclimatic Atlas of Ireland. AGMET – Joint working group on Applied Agricultural Meteorology, Dublin.

Connor, B.P. (1999). Phase 1 Report on Drilling of Exploration Boreholes at Norelands, Co. Kilkenny for Kilkenny County Council.

Conry, M. (1974). Kilkenny's 'Golden Vein': It's Soils, Land-Use and Agriculture. Irish Geography Volume VII.

Cullen, K.T. (1983). Report on a Hydrogeological Survey at Avonmore Creameries Limited, Ballyragget, Co. Kilkenny. Unpublished report produced by KTC Consultants.

Cullen, K.T. (1990). Groundwater Development at Avonmore Creameries Ltd., Ballyragget, Co. Kilkenny. Unpublished report produced by KTC Consultants.

Daly, D. and Misstear, B. (1976). A Preliminary Hydrogeological Survey of the Castlecomer Plateau, South East Ireland. Unpublished MSc thesis. Department of Hydrogeology. University of Birmingham. Daly, D. (1994). Chemical Pollutants in Groundwater: a Review of the Situation in Ireland. Paper presented at *Conference "Chemicals – a Cause for Concern?"* in Cork, 3-4 November 1994.

Daly, D. (1996). *Groundwater in Ireland*. Course notes for Higher Diploma in Environmental Engineering, UCC.

Daly, D., Keegan, M. and Wright, G.R. (1998). County Tipperary (South Riding) Groundwater Protection Scheme. Unpublished GSI report produced for Tipperary S.R. County Council

Daly, E.P. (1978). Groundwater Investigations at Avonmore Creameries LTD., Ballyragget, County Kilkenny. Unpublished internal GSI Report.

Daly, E.P. (1980). The Drilling and Testing of two Boreholes and Groundwater Development in the Westphalian Sandstones of the Slieveardagh Hills, County Tipperary. Internal Report Number 7. Geological Survey of Ireland.

Daly, E. P. (1982). The Groundwater Resources of the South East Industrial Development Region. Geological Survey of Ireland Report for the South East Regional Development Agency.

Daly, E.P. (1985). Groundwater Resources of the Nore River Basin: Hydrogeology of the Kiltorcan Aquifer System. Unpublished internal GSI report.

Daly, E.P. (1988). The Kiltorcan Sandstone Aquifer. Paper presented at the 8th Annual Groundwater Seminar held in Portlaoise, on: The future of Groundwater Development in Ireland.. Published by: IAH (Irish Group).

Daly, E. P. (1989). Natural Chemistry of Groundwater. Paper presented at the 9th Annual Groundwater Seminar held in Portlaoise. Published by: IAH (Irish Group).

Daly, E. P and Boland, M. (1990). Water, Rocks and the Environment in County Kilkenny. Irish Geological Association: Unpublished Guide to Field Trip 20/21 October 1990.

Daly, E. P. (1992). Groundwater Resources of the Nore River Basin: Interim Report. Geological Survey of Ireland. Unpublished internal GSI report.

Daly, E. P. (1993). Hydrogeology of the Dolomite Aquifer in the Southeast of Ireland. Paper presented at the 13th Annual Groundwater Seminar held in Portlaoise, on: Basin Management and Information Technology. Published by: IAH (Irish Group).

Daly, E.P. (1994). Groundwater Resources of the Nore River Basin. Geological Survey of Ireland, Report Series RS 94/1 (Groundwater). Unpublished internal GSI report.

Daly, E.P. (1995). The Principal Characteristics of the Flow Regime in Irish Aquifers. Paper presented at the 15th Annual Groundwater Seminar held in Portlaoise, on: The Role of Groundwater in Sustainable Development. Published by: IAH (Irish Group).

Daly, D., Moore, Meehan, R., Murphy, G., Fitzsimons, V., Clenaghan, C., Beirne, M., Carty, G., O'Leary, G., O'Dwyer, R. 2000. *Site Suitability Assessments for On-site Wastewater Treatment Systems: Course Manual.* FÁS and Geological Survey of Ireland.

DELG/EPA/GSI (1999) Groundwater Protection Schemes. Department of the Environment and Local Government, Environmental Protection Agency and Geological Survey of Ireland.

Environmental Protection Agency (2001). Website: www.epa.ie/techinfo/default.htm

Environmental Protection Agency (2000). Wastewater Treatment Manuals: Treatment Systems for Single Houses, Environmental Protection Agency.

EOLAS (1992). Bottled Water. National Standards Authority of Ireland, IS 432:1992.

Fitzgerald, D. and Forrestal, F. (1996). Monthly and Annual Averages of Rainfall for Ireland 1961-1990. Meterological Service, Climatological Note No. 10, UDC 551.577.2(415).

Fitzsimons, V. And Wright G.R.W (2000). Durrow (Convent) Water Supply Scheme. Groundwater Source Protection Zones. Draft Unpublished GSI Report Produced For Laois County Council.

Flanagan, P.J. (1992). Parameters of Water Quality: Interpretation and Standards. Second Edition. Environmental Research Unit, **ISBN 1 85053 095 5**

Hudson, M., Daly, D., Johnston, P. and Duffy, S. (1998). County Waterford Groundwater Protection Scheme. Unpublished GSI report produced for Waterford County Council.

Keohane, J. (1994). The Establishment of a Database for Groundwater in the South East Region of Ireland. Hydrogeological Report produced as Sub-Programme Measure 1 of the STRIDE Programme. Regional Water Laboratory, Butts Green, Kilkenny.

K.T. Cullen & Co. Ltd. (1997), Pausltown Water Supply. Source Protection Policy. Report for Kilkenny Council.

Kilroy, G., Coxon, C., Allott, N., and Rybaczuk, K. (1999). The Contribution of groundwater phosphorous to surface water eutrophication. Proceedings of the 9th Annual International Association of Hydrogeologists (Irish Group) Seminar held in Portlaoise.

Lee, M., 1999. Surface indicators and land use as secondary indicators of groundwater recharge and vulnerability. Unpublished (Research) MSc thesis. Department of Civil, Structural and Environmental Engineering, Trinity College Dublin.

Met Eireann, 1996. Potential Evapotranspiration. In: Collins, J.F, and Cummins, T (ed) 'Agroclimatic Atlas of Ireland', pp 134-137

M.C. O'Sullivan Consulting Engineers (1999). Kilkenny Water Supplies. Strategic Review. Report for Kilkenny County Council.

Misstear, B.D.R. (1998). The Logan Method for Analysing Pumping Test Data. Article published in: The GSI Groundwater Newsletter, edited by: Donal Daly. GSI publication No. 34.

Misstear, B.D.R., Daly, E.P., Daly, D. and Lloyd, J.W. (1980). The Groundwater Resources of the Castlecomer Plateau. Geological Survey of Ireland Report Series **RS 80/3** (Groundwater).

Naughton, M.M. (1978). A Hydrogeological Study of the Upper Kilmanagh River Basin, Republic of Ireland. Unpublished (Research) MSc thesis. University of Alabama.

O Suilleabhain C. (2000). Assessing the Boundary Between High and Moderately Permeable Subsoils. Unpublished MSc thesis. Department of Civil, Structural and Environmental Engineering, Trinity College Dublin.

Sleeman, A.G. and McConnell, B. (1995). Geology of East Cork - Waterford. A geological description of East Cork, Waterford and adjoining parts of Tipperary and Limerick, to accompany the Bedrock Geology 1:100,000 scale map series, Sheet 22, East Cork - Waterford. With contributions by K. Claringbold, P. O'Connor, W.P. Warren and G. Wright. Geological Survey of Ireland.

Swartz, M. (1999). Assessing the Permeability of Irish Subsoils. Unpublished (Research) MSc thesis. Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin.

Tietzsch-Tyler, D. and Sleeman, A.G. (1994a). Geology of Carlow - Wexford. A geological description to accompany the Bedrock Geology 1:100,000 map series, Sheet 19, Carlow - Wexford. With contributions by B.J. McConnell, E.P. Daly, A.M. Flegg, P.J. O'Connor and W.P. Warren. Edited by B. McConnell. Geological Survey of Ireland.

Tietzsch-Tyler, D. and Sleeman, A.G. (1994b). Geology of South Wexford. A geological description of South Wexford and adjoining parts of Waterford, Kilkenny and Carlow to accompany the Bedrock Geology 1:100,000 scale map series, Sheet 23, South Wexford. With contributions by M.A. Boland, E.P. Daly, A.M. Flegg, P.J. O'Connor and W.P. Warren. Geological Survey of Ireland, 62 pp.

Wright, G.R. (2000). QSC Graphs: and Aid to Classification of Data-poor Aquifers in Ireland. From: Robins, N.S. and Misstear, B.D.R. (eds.) Groundwater in the Celtic Regions: Studies in Hard Rock and Quaternary Hydrogeology. Geological Society, London, Special Publications, **182**. The Geological Society of London 2000.

Wright, G.R. and Woods, L. (2001). County Wicklow Groundwater Protection Scheme (Draft). Unpublished GSI report produced for Wicklow County Council.

Appendix IV: Discusion of the Key Indicators of Domestic and Agricultural Contamination of Groundwater

Appendix IV: Discussion Of the Key Indicators of Domestic and Agricultural Contamination of Groundwater

A.1 Introduction

This appendix is adapted from Daly, 1996.

There has been a tendency in analysing groundwater samples to test for a limited number of constituents. A "full" or "complete" analysis, which includes all the major anions and cations, is generally recommended for routine monitoring and for assessing pollution incidents. This enables (i) a check on the reliability of the analysis (by doing an ionic balance), (ii) a proper assessment of the water chemistry and quality and (iii) a possible indication of the source of contamination. A listing of recommended and optional parameters are given in Table A1. It is also important that the water samples taken for analysis have not been chlorinated - this is a difficulty in some local authority areas where water take-off points prior to chlorination have not been installed.

The following parameters are good contamination indicators: E.coli, nitrate, ammonia, potassium, chloride, iron, manganese and trace organics.

_ . _ _ _

TABLE A1				
Recommended Parameters				
Appearance	Calcium (Ca)	Nitrate (N0 ₃)*		
Sediment	Magnesium (Mg)	Ammonia (NH ₄ and NH ₃)*		
pH (lab)	Sodium (Na)	Iron (Fe)*		
Electrical Conductivity (EC)*	Potassium (K)*	Manganese (Mn)*		
Total Hardness	Chloride Cl)*			
General coliform	Sulphate (S0 ₄)*			
E. coli *	Alkalinity			
Optional Parameters (depending on local circumstances or reasons for sampling)				
Fluoride (F)	Fatty acids *	Zinc (Zn)		
Orthophosphate	Trace organics *	Copper (Cu)		
Nitrite $(N0_2)^*$	TOC *	Lead (Pb)		
B.O.D.*	Boron (B) *	Other metals		
Dissolved Oxygen *	Cadmium (Cd)			
* good indicators of contamination				

A.2 Faecal Bacteria and Viruses

E. coli is the parameter tested as an indicator of the presence of faecal bacteria and perhaps viruses; constituents which pose a significant risk to human health. The most common health problem arising from the presence of faecal bacteria in groundwater is diarrhoea, but typhoid fever, infectious hepatitis and gastrointestinal infections can also occur. Although E. coli bacteria are an excellent indicator of pollution, they can come from different sources - septic tank effluent, farmyard waste, landfill sites, birds. The faecal coliform : faecal streptococci ratio has been suggested as a tentative

indicator to distinguish between animal and human waste sources (Henry *et al.*, 1987). However, researchers in Virginia Tech (Reneau, 1996) cautioned against the use of this technique.

Viruses are a particular cause for concern as they survive longer in groundwater than indicator bacteria (Gerba and Bitton, 1984).

The published data on elimination of bacteria and viruses in groundwater has been compiled by Pekdeger and Matthess (1983), who show that in different investigations 99.9% elimination of *E. coli* occurred after 10-15 days. The mean of the evaluated investigations was 25 days. They show that 99.9% elimination of various viruses occurred after 16-120 days, with a mean of 35 days for Polio-, Hepatitis, and Enteroviruses. According to Armon and Kott (1994), pathogenic bacteria can survive for more than ten days under adverse conditions and up to 100 days under favourable conditions; entertoviruses can survive from about 25 days up to 170 days in soils.

Bacteria can move considerable distances in the subsurface, given the right conditions. In a sand and gravel aquifer, coliform bacteria were isolated 100 ft from the source 35 hours after the sewage was introduced (as reported in Hagedorn et al., 1981). They can travel several kilometres in karstic aquifers. In Ireland, research at Sligo RTC involved examining in detail the impact of septic tank systems at three locations with different site conditions (Henry, 1990; summarised in Daly, Thorn and Henry, 1993). Piezometers were installed down-gradient; the distances of the furthest piezometers were 8 m,10 m and 9.5 m, respectively. Unsurprisingly, high faecal bacteria counts were obtained in the piezometers at the two sites with soakage pits, one with limestone bedrock at a shallow depth where the highest count (max. 14 000 cfu's per 1000 ml) and the second where sand/gravel over limestone was present (max 3 000 cfu's per 100 ml). At the third site, a percolation area was installed at 1.0 m b.g.l; the subsoils between the percolation pipes and the fractured bedrock consisted of 1.5 m sandy loam over 3.5 m of poorly sorted gravel; the water table was 3.5 b.g.l. (So this site would satisfy the water table and depth to rock requirements of S.R.6:1991, and most likely the percolation test requirement.) Yet, the maximum faecal coliform bacteria count was 300 cfus per 100 ml. Faecal streptocci were present in all three piezometers. It is highly likely that wells located 30 m down gradient of the drainage fields would be polluted by faecal bacteria.

As viruses are smaller than bacteria, they are not readily filtered out as effluent moves through the ground. The main means of attenuation is by adsorption on clay particles. Viruses can travel considerable distances underground, depths as great as 67 m and horizontal migrations as far as 400 m have been reported (as reported in US EPA, 1987). The possible presence of viruses in groundwater as a result of pollution by septic tank systems is a matter of concern because of their mobility and the fact that indicator bacteria such faecal coliforms have been found not to correlate with the presence of viruses in groundwater samples (US EPA, 1987).

The natural environment, in particular the soils and subsoils, can be effective in removing bacteria and viruses by predation, filtration and absorption. There are two high risk situations: (i) where permeable sands and gravels with a shallow water table are present; and (ii) where fractured rock, particularly limestone, is present close to the ground surface. The presence of clayey gravels, tills, and peat will, in many instances, hinder the vertical migration of microbes, although preferential flow paths, such as cracks in clayey materials, can allow rapid movement and bypassing of the subsoil.

A.3 Nitrate

Nitrate is one of the most common contaminants identified in groundwater and increasing concentrations have been recorded in many developed countries. The consumption of nitrate rich water by young children may give rise to a condition known as methaemoglobinaemia (blue baby syndrome). The formation of carcinogenic nitrosamines is also a possible health hazard and epidemiological studies have indicated a positive correlation between nitrate consumption in drinking

water and the incidence of gastric cancer. However, the correlation is not proven according to some experts (Wild and Cameron, 1980). The EC MAC for drinking water is 50mg/l.

The nitrate ion is not adsorbed on clay or organic matter. It is highly mobile and under wet conditions is easily leached out of the rooting zone and through soil and permeable subsoil. As the normal concentrations in uncontaminated groundwater is low (less than 5 mg/l), nitrate can be a good indicator of contamination by fertilisers and waste organic matter.

In the past there has been a tendency in Ireland to assume that the presence of high nitrates in well water indicated an impact by inorganic fertilisers. This assumption has frequently been wrong, as examination of other constituents in the water showed that organic wastes - usually farmyard waste, probably soiled water - were the source. The nitrate concentrations in wells with a low abstraction rate - domestic and farm wells - can readily be influenced by soiled water seeping underground in the vicinity of the farmyard or from the spraying of soiled water on adjoining land. Even septic tank effluent can raise the nitrate levels; if a septic tank system is in the zone of contribution of a well, a four-fold dilution of the nitrogen in the effluent is needed to bring the concentration of nitrate below the EU MAC (as the EU limit is 50 mg/l as NO₃ or 11.3 mg/l as N and assuming that the N concentration in septic tank effluent is 45 mg/l).

The recently produced draft county reports by the EPA on nitrate in groundwater show high levels of nitrate in a significant number of public and group scheme supplies, particularly in south and southern counties and in counties with intensive agriculture, such as Carlow and Louth. This suggest that diffuse sources – landspreading of fertilisers – is having an impact on groundwater.

In assessing regional groundwater quality and, in particular the nitrate levels in groundwater, it is important that:

- (i) conclusions should not be drawn using data only from private wells, which are frequently located near potential point pollution sources and from which only a small quantity of groundwater is abstracted;
- (ii) account should be taken of the complete chemistry of the sample and not just nitrate, as well as the presence of *E. coli*.;
- (iii) account should be taken of not only the land-use in the area but also the location of point pollution sources;
- (iv) account should be taken of the regional hydrogeology and the relationship of this to the well itself. For instance, shallow wells generally show higher nitrate concentrations than deeper wells, low permeability sediments can cause denitrification, knowledge on the groundwater flow direction is needed to assess the influence of land-use.

A.4 Ammonia

Ammonia has a low mobility in soil and subsoil and its presence at concentrations greater than 0.1 mg/l in groundwater indicates a nearby waste source and/or vulnerable conditions. The EU MAC is 0.3 mg/l.

A.5 Potassium

Potassium (K) is relatively immobile in soil and subsoil. Consequently the spreading of manure, slurry and inorganic fertilisers is unlikely to significantly increase the potassium concentrations in groundwater. In most areas in Ireland, the background potassium levels in groundwater are less than 3.0 mg/l. Higher concentrations are found occasionally where the rock contains potassium e.g. certain granites and sandstones. The background potassium:sodium ratio in most Irish groundwaters is less than 0.4 and often 0.3. The K:Na ratio of soiled water and other wastes derived from plant organic

matter is considerably greater than 0.4, whereas the ratio in septic tank effluent is less than 0.2. Consequently a K:Na ratio greater than 0.4 can be used to indicate contamination by plant organic matter - usually in farmyards, occasionally landfill sites (from the breakdown of paper). However, a K:Na ratio lower than 0.4 does not indicate that farmyard wastes are **not** the source of contamination (or that a septic tank is the cause), as K is less mobile than Na. (Phosphorus is increasingly a significant pollutant and cause of eutrophication in surface water. It is <u>not</u> a problem in groundwater as it usually is not mobile in soil and subsoil).

A.6 Chloride

The principle source of chloride in uncontaminated groundwater is rainfall and so in any region, depending on the distance from the sea and evapotranspiration, chloride levels in groundwater will be fairly constant. Chloride, like nitrate, is a mobile cation. Also, it is a constituent of organic wastes. Consequently, levels appreciably above background levels (12-15 mg/l in Co. Offaly, for instance) have been taken to indicate contamination by organic wastes such as septic tank systems. While this is probably broadly correct, Sherwood (1991) has pointed out that chloride can also be derived from potassium fertilisers.

A.7 Iron and manganese

Although they are present under natural conditions in groundwater in some areas, they can also be good indicators of contamination by organic wastes. Effluent from the wastes cause deoxygenation in the ground which results in dissolution of iron (Fe) and manganese (Mn) from the soil, subsoil and bedrock into groundwater. With reoxygenation in the well or water supply system the Fe and Mn precipitate. High Mn concentrations can be a good indicator of pollution by silage effluent. However, it can also be caused by other high BOD wastes such as milk, landfill leachate and perhaps soiled water and septic tank effluent.

Box A1 Warning/trigger Levels for Certain Contaminants

As human activities have had some impact on a high proportion of the groundwater in Ireland, there are few areas where the groundwater is in a pristine, completely natural condition. Consequently, most groundwater is contaminated to some degree although it is usually not polluted. In the view of the GSI, assessments of the degree of contamination of groundwater can be beneficial as an addition to examining whether the water is polluted or not. This type of assessment can indicate where appreciable impacts are occurring. It can act as a warning that either the situation could worsen and so needs regular monitoring and careful land-use planning, or that there may be periods when the source is polluted and poses a risk to human health and as a consequence needs regular monitoring. Consequently, thresholds for certain parameters can be used to help indicate situations where additional monitoring and/or source protection studies and/or hazard surveys may be appropriate to identify or prevent more significant water quality problems.

Parameter	Threshold	EU MAC
	mg/l	mg/l
Nitrate	25	50
Potassium	4	12
Chloride	30 (except near sea)	250
Ammonia	0.15	0.3
K/Na ratio	0.3-0.4	
Faecal bacteria	0	0

Box A2 Summary : Assessing a Problem Area

Let us assume that you are examining an area with potential groundwater contamination problems and that you have taken samples in nearby wells. How can the analyses be assessed?

E. coli present \Rightarrow organic waste source nearby (except in karst areas), usually either a septic tank system or farmyard.

E. coli absent \Rightarrow either not polluted by organic waste or bacteria have not survived due to attenuation or time of travel to well greater than 100 days.

Nitrate > 25 *mg/l* \Rightarrow either inorganic fertiliser or organic waste source; check other parameters.

Ammonia > 0.15 mg/l \Rightarrow source is nearby organic waste; fertiliser is not an issue.

Potassium (K) > 5.0 mg/l \Rightarrow source is probably organic waste.

K/Na ratio > 0.4 (0.3, *in many areas*) \Rightarrow Farmyard waste rather than septic tank effluent is the source. If < 0.3, no conclusion is possible.

Chloride > 30 $mg/l \Rightarrow$ organic waste source. However this does not apply in the vicinity of the coast (within 20 km at least).

In conclusion, faecal bacteria, nitrate, ammonia, high K/Na ratio and chloride indicate contamination by organic waste. However, only the high K/Na helps distinguish between septic tank effluent and farmyard wastes. So in many instances, while the analyses can show potential problems, other information is needed to complete the assessment.

A.8 References

Armon, R. and Kott, Y., 1994. The health dimension of groundwater contamination. In: Zoller, U. (Editor), Groundwater Contamination and Control. Published by Marcel, Dekker, Inc., pp71-86.

- Daly, D. 1996. Groundwater in Ireland. Course notes for Higher Diploma in Environmental Engineering, UCC.
- Daly, D., Thorn, R. and Henry, H., 1993. Septic tank systems and groundwater in Ireland. Geological Survey Report Series RS 93/1, 30pp.
- Gerba, C.P. and Bitton, G., 1984. Microbial pollutants : their survival and transport pattern to groundwater. In : G.Bitton and C.P. Gerba (Editors), Groundwater Pollution Microbiology, Wiley Intersciences Publishers, pp 65-88.
- Hagedorn, C., McCoy, E.L. and Rahe, T. M. 1981. The potential for ground water contamination form septic tank effluents. Journal of Environmental Quality, volume 10, no. 1, p1-8.
- Henry, H. (1990). An Evaluation of Septic Tank Effluent Movement in Soil and Groundwater Systems. Ph.D. Thesis. Sligo Regional Technical College. National Council for Education Awards -Dublin.
- Reneau, R.B. 1996. Personal communication. Virginia Polytechnic Institute and State University.
- Sherwood, M., 1991. Personal communication, Environmental Protection Agency.
- US EPA. 1987. Guidelines for delineation of wellhead protection areas. Office of Ground-water Protection, U.S. Environmental Protection Agency.
- Wild, A. and Cameron, K.C., 1980. Nitrate leaching through soil and environmental considerations with special reference to recent work in the United Kingdom. Soil Nitrogen -Fertilizer or Pollutant, IAEA Publishers, Vienna, pp 289-306.

Appendix V: Laboratory analytical results

Source	Sampling Date	Sampling Time	То	Ref No	Sampling Location	Taken By	Lab No	EPARef Stn Grid Ref	f Water Supply	Public/Group/Private	Temperature	Odour Colou	r pH	Conductivity	Turbidity	TOC An	mmonia
												1/2/3 Hazer	1	μS/cm	NTU	mg/l C m	ng/l N
	20/04/1002	11 20 00					1.640			D.11				(22)			
Spring at Paulstown Castle	29/04/1992	11:38:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle		1648	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.1	1 5	7.3	623			0.03
Spring at Paulstown Castle	01/07/1992	15:55:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle		2681	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	11.4	1 5	7.4	640			0.02
Spring at Paulstown Castle	18/11/1992	13:29:00	Kilkenny Co. Co.	KK00000	Spring at Paulstown Castle		5086	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.8	2 5	7.4	623			0.02
Spring at Paulstown Castle	10/03/1993	16:00:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle		1017	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.6	1 5	7.3	660			0.02
Borehole at Castlecomer Yarns	02/06/1993	10.00.00	Kilkenny Co. Co.	KK00300	Tap in vard at Castlecomer Yarns	J Keohane	2269	25360 17330	Castlecomer Yarns	Private	2.0	1 15	7.5	570	1	<1	0.01
Spring at Paulstown Castle	02/06/1993		Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle	J. Keohane	2270	KIK46 S 660 570	Gowran/Goresbr./P-town	Public		1 5	7.2	696	0.4	5.7	0.01
Borehole at Rathcash	02/06/1993		Kilkenny Co. Co.	KK02000	Joe Pykes house, Rathcash, Clara.	J. Keohane	2271	KIK55 25870 15510	Rathcash	Group		1 5	7.3	682	0.2	< 1	0.01
Springs at Bausheenmore	02/06/1993		Kilkenny Co. Co.	KK00500	At source (springs at Bausheenmore)	J. Keohane	2272	KIK39 25520 14690)	Private		1 5	7.3	814	0.35	0.9	0.01
Spring at Westcourt	02/06/1993		Kilkenny Co. Co.	KK00800	Spring at Earlsland, Westcourt, Callan	J. Keohane	2273	KIK91 S 407 442	Callan	Public		1 5	7.3	718	0.2	0.5	0.01
Borehole at Galmoy	03/06/1993	11:25:00	Kilkenny Co. Co.	KK00200	Leahy's House, Galmoy	P.Mullins	2292	KIK17 23020 17120	Galmoy	Group	10	1 5	7.4	790	0.2	< 1	0.01
Galmoy 35	03/06/1993	11:47:00	Kilkenny Co. Co.		M. Phelan	P.Mullins	2293			Private	10	1 5	7.4	792	0.15	< 1	0.01
Galmoy 37	03/06/1993	12:02:00	Kilkenny Co. Co.		Mr. Tom Maher's House	P.Mullins	2294			Private	11	1 5	7.4	769	0.2		0.01
Galmoy 25	03/06/1993	12:15:00	Kilkenny Co. Co.		Hennessy's at House	P.Mullins	2295			Private	10	1 5	7.3	894	0.25	0.2	0.01
Galmoy 202	03/06/1993	12:55:00	Kilkenny Co. Co.		Phelans	P.Mullins	2296			Private	11	1 5	7.4	755	0.3	< 1	0.01
Borehole at Bawnmore	03/06/1993	16:00:00	Kilkenny Co. Co.	KK00100	Phelan's house, Bawnmore	P.Mullins	2297	KIK50 22580 16610	Bawnmore	Group	12	1 5	7.3	820	0.2	0.14	0.01
Spring at Clomantagh	10/06/1993	11:40:00	Kilkenny Co. Co.	KK00900	Beside Nuenna river, 50m SE of roac	P.Mullins+J.Keohane	2395	23520 16320)	Private		1 5	7.3	664	0.3	!	0.01
Spring at Clomantagh	10/06/1993	11:50:00	Kilkenny Co. Co.	KK00900	Beside Nuenna river, 50m SE of roac	P.Mullins+J.Keohane	2396	23520 16320)	Private		1 5	7.3	677	0.35		0.01
Borehole at Dunmore	10/06/1993	12:28:00	Kilkenny Co. Co.	KK00700	C. Murray,s house, Dunmore.	P.Mullins+J.Keohane	2397	24910 16200	Dunmore	Group		1 5	7.4	676	0.2		0.01
Spring Toberpatrick Urlingford	15/06/1993	10:45:00	Kilkenny Co. Co.	KK01500	In chamber at source	C. Murray	2417	KIK34 23000 16350	Urlingford/Johnstowr	Public		1 5	7.2	781	0.3	1.6	0.01
Borehole at Kılmanagh	15/06/1993	12:00:00	Kilkenny Co. Co.	KK01400	In pumphouse	C. Murray	2418	KIK45 23930 15250	Kilmanagh/Ballycuddihy	Group		1 5	7.5	659	0.3	'	0.01
Borehole at Dunmore S/G	15/06/1993	14:30:00	Kilkenny Co. Co.	KK01000	Canteen at Dunmore Sand & Grave	C. Murray	2419	KIK53 25000 16020	Dunmore Sand & Gravel	Private		1 5	7.4	643	1.2	0.4 0	0.01
Borehole at Kilkenny Mar	15/06/1993	15:00:00	Kilkenny Co. Co.	KK01300	Cattle holding shec	C. Murray	2420	250/0 156/0	Kilkenny Mart	Private		1 5	7.6	691	0.2	0.4	0.01
Borenole at Windgap	01/07/1993	15.55.00	Klikenny Co. Co.	KK01900	Overflow from borehold	C. Murray	2769	24200 13580	Farm supply	Private	11.6	1 5	7.2	382	1.5		0.37
Spring at Paulstown Castle	05/08/1993	15:55:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle	D 1 (11'	3294	KIK46 5 660 570	Gowran/Goresbr./P-town	Public	11.6	1 5	7.5	680	0.00		0.01
Galmoy	08/11/1993	11:15:00	Kilkenny Co. Co.		Leany's House (A 82)	P.Mullins D.Mullins	4/54		Galmoy	Group	8	1 5	7.3	806	0.09		0.01
Gaimoy	08/11/1993	11:45:00	Kilkenny Co. Co.		Parochial House	P.Mullins	4755		Galmoy	Private	9	1 5	7.5	123	0.09		0.01
Galmoy	08/11/1995	12:20:00	Kilkenny Co. Co.		Prenhvia (A 35)	P.Mulling	4/50		Galmoy	Private	8	1 5	7.1	996	0.21		0.01
Galmoy	08/11/1993	12:40:00	Kilkenny Co. Co.		Biophys (A 25) Phelans (A 24)	P Mullins	4758		Galmoy	Private	9	1 5	7.4	874	0.13		< 0.01
Galmoy	08/11/1993	13:55:00	Kilkenny Co. Co.		Hennessy's	P Mullins	4750		Galmoy	Private	9	1 5	/.4	0/4	0.19		. 0.01
Gainoy	08/11/1995	15.55.00	Kirkeniny Co. Co.		Trennessy s	1 .Mullins	4759		Gainoy	Titvate	,						
Galmoy	08/11/1993	14:44:00	Kilkenny Co. Co.		Gannons (A 36)	P.Mullins	4760		Galmoy	Private	9	1 5	7.3	864	0.13	<	< 0.01
Galmoy	08/11/1993	14:52:00	Kilkenny Co. Co.		Maher's (A 37)	P.Mullins	4761		Galmoy	Private	9	1 5	7.3	816	0.14	<	< 0.01
Borehole at Bawnmore	08/11/1993	15:15:00	Kilkenny Co. Co.	KK00100	Phelan's house, Bawnmore	P.Mullins	4762	KIK50 22580 16610	Bawnmore	Group	9	1 5	7.3	829	0.1	<	< 0.01
Galmoy	08/11/1993	15:45:00	Kilkenny Co. Co.		Dan Phelan (A 202)	P.Mullins	4763		Galmoy	Private	9	1 5	7.3	739	0.07	<	< 0.01
Spring Toberpatrick Urlingford	09/11/1993	11:45:00	Kilkenny Co. Co.	KK01500	In chamber at source	P. Mullins	4776	KIK34 23000 16350	Urlingford/Johnstowr	Public	10	2 < 5	7.3	808	0.22	(0.01
Borehole at Castlecomer Yarns	09/11/1993	12:35:00	Kilkenny Co. Co.	KK00300	Tap in yard at Castlecomer Yarns	P. Mullins	4777	25360 17330	Castlecomer Yarns	Private	10	2 5	7.6	568	3.5	(0.01
Spring at Paulstown Castle	09/11/1993	14:40:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle	P. Mullins	4778	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	11	2 < 5	7.4	648	0.24		0.01
Borehole at Clara	09/11/1993	15:15:00	Kilkenny Co. Co.	KK00400	At pumphouse	P. Mullins	4779	KIK41 25770 15530	Clara	Group	10	1 < 5	7.4	677	0.17	67.3	0.01
C i i W i i i	00/11/1002	16.00.00	K.II. C. C.	1/1/ 00000	0 · (E 11 1 W ((C))	D M 11	1700	KIK01 C 407 442	C 11	D 11	10	1		700	0.21		0.01
Spring at westcourt	10/11/1993	16:00:00	Kilkenny Co. Co.	KK00800	Spring at Earlsland, Westcourt, Callan	P. Mullins	4/80	KIK91 S 407 442	Callan	Public	10	1 < 5	7.5	702	0.21		0.01
Borehole at Dunmore	10/11/1993	10:50:00	Kilkenny Co. Co.	KK00700	C. Murray,s house, Dunmore.	C.Murray	4796	24910 16200	Dunmore	Brivete	8.4	1 3	7.5	/02	0.1		0.01
Borehole at Dunmore S/G	10/11/1995	10.55.00	Kilkenny Co. Co.	KK01000	Canteen at Dunmore Sand & Grave	C.Murray	4/9/	XIK55 25000 16020 25070 15670	Kilkanny Mart	Private	8.1	1 < 5		633	0.14		0.01
Borehole at Kilkenily Mai	10/11/1993	12:22:00	Kilkenny Co. Co.	KK01300	La numphouse	C.Murray	4790	VIV45 22020 15250	V Kilkelilly Mait	Group	4.9	2 < 5	- 77	644	0.14		0.01
Springs at Bausheenmore	10/11/1993	12.22.00	Kilkenny Co. Co.	KK00500	At source (springs at Bausheenmore)	C.Murray	4/99	KIK43 23930 13230 KIK30 25520 14600	Kiinanagi/Banycuduniy	Private	10 2	2 < 5	7.1	812	0.33		0.01
Borehole No 9 Thomastour	10/11/1993	15:10:00	Kilkenny Co. Co.	KK01600	At numphouse	C Murray	4800	KIK37 25520 14090	Thomastown	Public	10.2	2 < 5	7.4	708	0.23		0.01
Borehole at Windgar	10/11/1993	15:50:00	Kilkenny Co. Co.	KK01000	Overflow from borebole	C Murray	4801	24200 13580	Farm supply	Private	10.8	1 < 5	7.5	375	0.13		0.01
Borehole at Avonmore Dairs	11/11/1993	11:30:00	Kilkenny Co. Co.	KK01200	Holding tank on roof	C Murray	4803	24200 13380	Avonmore Kilkenny City	Private	10.0	2 5	7.8	621	0.11		0.01
Rathcash Clifden Co Kilkenny	08/12/1993	09:45:00	Kilkenny Co. Co.		Joe Pykes	J Keohane	5212		Rathcash	Groun		1 5	7.4	711	0.17	~	< 0.01
Spring at Paulstown Castle	10/11/1994	11:25:00	Kilkenny Co. Co	KK00600	Spring at Paulstown Castle		5072	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.8	1 5	7.1	680			0.08
Graigue, Callan.	12/01/1995		Kilkenny Co. Co.	,	James Robinsons well	James Robinson	212		Proposed Supply for James Robinson	Private		< 5	7.6	528	14		
			. ,									-					
Spring at Paulstown Castle	23/01/1995	15:45:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle		255	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.5	5		680		(0.01
	16/10/1005	15 22 00							0 10 1 10	D 11	11.0			50.5			
Spring at Paulstown Castle	16/10/1995	15:23:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle		4410	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	11.8	1 5	7.3	595		<	0.01
Borehole at Castlecomer Yarns	08/01/1996	11.10.00	Kilkenny Co. Co	KK00300	Tap in yard at Castlecomer Yarns	C Murray	74	25360 17330	Castlecomer Yarns	Private	11.6	2 20	74	583	5.5	2 <	< 0.01
Borehole at Dunmore	08/01/1996	11:30:00	Kilkenny Co. Co.	KK00700	C Murray s house Dunmore	C Murray	75	24910 16200	Dunmore	Group	8	1 5	7.3	615	0.2	3.4 <	< 0.01
Borehole at Dunmore S/G	08/01/1996	12:00:00	Kilkenny Co. Co.	KK01000	Canteen at Dunmore Sand & Gravel	C Murray	76	KIK53 25000 16020	Dunmore Sand & Gravel	Private	10.1	2 5	7.7	627	1.6	2.2 <	< 0.01
						,											
Borehole at Kilkenny Mar	08/01/1996	12:15:00	Kilkenny Co. Co.	KK01300	Cattle holding shec	C. Murray	77	25070 15670	Kilkenny Mart	Private	9.5	1 5	7.9	690	0.2	2.4 <	< 0.01
Borehole at Clara	08/01/1996	12:55:00	Kilkenny Co. Co.	KK00400	At pumphouse	C. Murray	78	KIK41 25770 15530	Clara	Group	11	1 5	7.3	696	0.2	4.5 <	< 0.01
	00/01/1000	12.10.00	K.II. C. C.	WW02000	I BI I BI I CI	C V		WHV66 05000 1575	n d t	6	0.7			700			
Borehole at Rathcash	08/01/1996	13:10:00	Kilkenny Co. Co.	KK02000	Joe Pykes house, Rathcash, Clara.	C. Murray	79	кікээ 25870 15510	Kathcash	Group	8.7	2 5	7.4	/08	0.1	<	- 0.01
Spring at Pauletown Castla	08/01/1996	14.40.00	Kilkenny Co. Co	KK00600	Spring at Paulstown Castle	C Murray	80	KIK46 \$ 660 570	Gowran/Goreshr /P_town	Public	10.6	1 5	7 2	623		55 -	< 0.01
Spring at Clomantagh	09/01/1996	10:40:00	Kilkenny Co. Co.	KK00900	Beside Nuenna river 50m SF of road	C Murray	89	23520 16220	Sowran Goresor, 1-10wil	Private	9.8	1 60	73	467	38		0.026
Spring Toberpatrick Urlingford	09/01/1996	11:05:00	Kilkenny Co. Co.	KK01500	In chamber at source	C. Murray	90	KIK34 23000 16350	Urlingford/Johnstowr	Public	9.7	1 5	73	712	17	8 <	< 0.01
Borehole at Bawnmore	09/01/1996	11:30:00	Kilkenny Co. Co.	KK00100	Phelan's house Bawnmore	C. Murray	91	KIK50 22580 16610	Bawnmore	Groun	8.5	1 5	7.2	835	0.1	3 <	< 0.01
_orenoie at Dammillon	5710111770	11.50.00			- nouno nouse, parminon	e	· · ·	22000 10010	Burninoit	oroup	0.0			000			

Source Sampling Date Sampling Time o-Phosphate Nitrate Nitrite Chloride Ca Hardness Alkalinity TCS Total Coliforms FCS Fecal Coliforms Sulphate Dry Residue Sus_Solids Magnesium Total Hardness Sodium Potassium Aluminium Iron Manganese Copper Zinc Chromium Lead mg/l P mg/l N mg/l N mg/l Cl mg/l CaCO3 mg/l CaCO3 per 100 ml per 100 ml mg/l SO4 mg/l mg/l SO4 mg/l mg/l Mg mg/l CaCO3 mg/l Na mg/l K mg/l Al mg/l F mg/l Mn mg/l Cu mg/l Zn mg/l Zn mg/l P

Spring at Paulstown Castle	20/04/1002	11-38-00	0.04	6		20				78		44	2	5						< 0.05	< 0.02	< 0.03	< 0.01		
Spring at Paulstown Castle	01/07/1992	15:55:00	0.04	5		29				13		000	2	5						< 0.03	< 0.02	< 0.03	0.01		
Spring at Paulstown Castle	20/08/1992	15:15:00	0.01	43		28				15		,,,,		5						< 0.04	< 0.02	< 0.05	0.01		
Spring at Paulstown Castle	18/11/1002	13:20:00	0.02	4.5		20				340		280		5											
Spring at Paulstown Castle	10/03/1003	16:00:00	0.03	6.8		20				20		5		5						0.011	0.000	< 0.001	0.015		
Borehole at Castlecomer Varns	02/06/1993	10.00.00	0.02	0.0	0.006	20				999		999	7	5	23.8	242	33.1	14		9.2	0.797	- 0.001	0.017	< 0.001	< 0.001
Spring at Paulstown Castle	02/06/1993		0.05	8.2	0.005	30		305		999		999	< 1		12.3	355	91	3.2		0.051	0.006	< 0.001	< 0.005	< 0.001	< 0.001
Borehole at Rathcash	02/06/1993		0.08	7.2	0.001	24		317		15		1	~1		22.3	359	8.4	1.5		0.033	0.000	< 0.001	0.02	< 0.001	< 0.001
Springs at Bausheenmore	02/06/1993		0.08	6.1	0.006	41		401		999		999	< 1		33.3	425	93	43		0.077	0.017	< 0.001	0.018	< 0.001	< 0.001
Spring at Westcourt	02/06/1993		0.05	3.8	0.002	24		370		64		21	<1		27.8	383	9.8	1.2		0.012	< 0.005	< 0.001	< 0.010	< 0.001	< 0.001
Borehole at Galmov	03/06/1993	11.25.00	0.05	9.4	0.002	29		350		999		999	4		83.2	399	17.1	2.7	0.027	0.026	< 0.005	0.063	0.036	< 0.001	0.011
Galmov 35	03/06/1993	11:47:00	0.01	10	0.003	29		350		999		999	9		96.8	393	22.8	6.5	0.006	0.022	< 0.005	0.079	0.021	< 0.001	0.001
Galmoy 37	03/06/1993	12:02:00	0.01	5.7	0.002	20		379		999		999	3		84.8	393	20.2	2.2	0.02	0.015	< 0.005	0.075	0.05	< 0.001	0.005
Galmoy 25	03/06/1993	12:15:00	0.007	12	0.003	22		383		275		28	25		80	433	37.9	11.7	0.009	0.036	< 0.005	0.439	0.278	< 0.001	0.016
Galmoy 202	03/06/1993	12:55:00	0.005	5.7	0.003	22		359		20		18	7		58.8	375	26.2	10	0.019	0.021	0.012	0.151	0.027	< 0.001	< 0.001
Borehole at Bawnmore	03/06/1993	16:00:00	0.01	6	0.002	26		398		1		1	8		102	419	21.8	5.4	0.005	0.015	< 0.005	0.068	0.03	< 0.001	< 0.001
Spring at Clomantagh	10/06/1993	11:40:00	0.007	6.1	0.004	22		297		230			< 1		14.1	359	7.5	1.6		0.032	0.009	< 0.001	< 0.005	< 0.001	0.003
Spring at Clomantagh	10/06/1993	11:50:00	0.02	6.5	0.003	23		318		162			< 1		14.3	369	7.6	1.6		0.037	0.008	0.001	< 0.005	< 0.001	< 0.001
Borehole at Dunmore	10/06/1993	12:28:00	0.004	14	0.001	27		251		999		999	2		7.5	354	8.3	0.8		0.031	< 0.005	0.009	< 0.005	< 0.001	< 0.001
Spring Toberpatrick Urlingford	15/06/1993	10:45:00	0.01	7.6	0.005	27		383		34		15	8		22.2	400	9.1	4.7				0.004			< 0.001
Borehole at Kilmanagh	15/06/1993	12:00:00	0.01	4.5	0.001	19		328		175		116	7		18.9	345	8.5	1.1			0.009				< 0.001
Borehole at Dunmore S/G	15/06/1993	14:30:00	0.01	0.2	0.006	18		313		999		999	24		19.3	333	11.3	1				0.039			< 0.001
Borehole at Kilkenny Mar	15/06/1993	15:00:00	0.01	6.3	0.002	18		296		43		20	32		20.8	355	11	1.5				0.03			< 0.001
Borehole at Windgap	01/07/1993		0.02	1.6	0.001	14		137		999		999	< 1	Not Vis.	20	177	6.9	1.1		0.17	0.014		0.01		
Spring at Paulstown Castle	05/08/1993	15:55:00	0.02	6		27				85				5						0.019	< 0.005		0.025		
Galmoy	08/11/1993	11:15:00	< 0.01	10.2		34	309	389					8		30.6	435	8.6	1.1		0.041	< 0.005	< 0.001	0.031	0.0005	< 0.001
Galmoy	08/11/1993	11:45:00	< 0.01	4.4		20	247	378		999		999	11		35.9	395	11.5	1.7		0.03	< 0.005	< 0.001	0.021	0.0004	< 0.001
Galmoy	08/11/1993	12:20:00	< 0.01	5.3		59	384	470		6		999	10		27.4	497	18.6	10.3		0.036	< 0.005	0.006	0.034	0.0004	0.003
Galmoy	08/11/1993	12:40:00	0.003	7.2	0.01	24	300	437		24		999	14		38.1	457	12.7	1.8		0.055	0.002	< 0.001	0.062	0.0005	< 0.001
Galmoy	08/11/1993	13:50:00	0.004	15.1		34.6	288	387		999		999	14		38.7	448	13.4	9		0.032	< 0.005	0.014	0.178	0.0005	< 0.001
Galmoy	08/11/1993	13:55:00								50		/													
Galmoy	08/11/1993	14.44.00	0.008	12.7		28 7	342	415		100		2	8		24.5	443	13.9	91		0.044	0.016	< 0.001	0.681	0.0003	< 0.001
Galmoy	08/11/1993	14:52:00	0.007	8.8		26	309	416		999		999	7		32.4	443	8.6	1.4		0.051	< 0.005	0.002	0.026	0.0004	< 0.001
Borehole at Bawnmore	08/11/1993	15:15:00	< 0.01	6		27.6	315	434		1		1	9		33.6	454	9	2.2		0.025	< 0.005	0.005	0.015	0.0004	< 0.001
Galmoy	08/11/1993	15:45:00	0.006	6.4		18.3	305	389		999		999	6		22.6	398	8.7	2.7		0.038	< 0.005	0.008	0.017	0.0004	< 0.001
Spring Toberpatrick Urlingford	09/11/1993	11:45:00	0.01	8.5		27		395		100		21	8			403									
Borehole at Castlecomer Yarns	09/11/1993	12:35:00	0.01	0.2		19		278		1		999	12			229									
Spring at Paulstown Castle	09/11/1993	14:40:00	0.01	5.8		26		296		33		18	8			314									
Borehole at Clara	09/11/1993	15:15:00	0.01	6.8		21		325		167		2	8			340									
Sania - et Westernet	00/11/1002	16.00.00	0.01	4.2		24		270		4		2	£			269									
Barahala at Dummara	10/11/1993	10:00:00	0.01	4.5		24		206		4		000	- 1		7.2	308	0.2	0.8		0.041	< 0.005	0.001	0.025		< 0.001
Borehole at Dunmore S/G	10/11/1993	10:55:00	0.01	0.1		17		290		84		27	12		17.5	300	12	0.0		0.106	0.000	0.001	0.033		< 0.001
Borehole at Kilkenny Mar	10/11/1993	11:15:00	0.01	6.6		18		307		8		6	12		19	324	12	1.3		0.087	0.013	0.003	0.487		< 0.001
Borehole at Kilmanagh	10/11/1993	12:22:00	0.01	5		19		293		8		2	< 1		16.2	300	93	0.9		< 0.007	0.001	0.001	0.467		< 0.001
Springs at Bausheenmore	10/11/1993	14:30:00	0.01	6.5		30		275		100		100	<1		34	381	10.1	3.5		0.009	0.001	< 0.001	0.052		< 0.001
Borehole No 9 Thomastowr	10/11/1993	15:10:00	0.02	7.3		41				999		999	2		25.4	350	18	3.5		0.017	0.002	0.002	0.565		0.001
Borehole at Windgar	10/11/1993	15:50:00	0.02	1.7		12		173		9		5	2		17	173	8	1		0.016	0.001	< 0.001	0.075		< 0.001
Borehole at Avonmore Dairy	11/11/1993	11:30:00	0.3	6.5		31		230		999		999	15		10.6	265	16.9	6.7		0.04	0.003	0.002	0.178		< 0.001
Rathcash, Clifden, Co. Kilkenny	08/12/1993	09:45:00	0.011	6	0.001	23		334		999		999	8		27.8	358	8.5	1.2		0.01	0.006	0.004	0.084		0.003
Spring at Paulstown Castle	10/11/1994	11:25:00	< 0.01	5.3		29				420		170		5											
Graigue, Callan.	12/01/1995							244							27.4	238	14.1	0.7		1.06	0.09	0.01	0.166		
Service of Development C 1	22/01/1005	15.45.00	0.01	7		25				500		200		-											
Spring at Paulstown Castle	23/01/1995	15:45:00	0.01	/		23				500		290		3											
Spring at Paulstown Castle	16/10/1995	15:23:00	0.016	4		22				150		72		5											
Borehole at Castlecomer Yarns	08/01/1996	11:10:00		0.05	0.006	18.5		304		999		999	22		20.2	321	18.6	0.9		0.116	0.434		< 0.02		
Borehole at Dunmore	08/01/1996	11:30:00	< 0.001	9.5	< 0.003	20.9		257		999		999	20		6.1	338	7.7	0.8		< 0.06	< 0.02		< 0.02		
Borehole at Dunmore S/G	08/01/1996	12:00:00	< 0.001	< 0.01	0.004	19.3		311				999	36		17.5	355	11.2	0.9		< 0.06	0.15		< 0.02		
Borehole at Kilkenny Mar	08/01/1006	12:15:00	< 0.001	5.0	< 0.002	10.7		212		5		000	40		18.2	280	10.2	1.2		< 0.06	< 0.02		< 0.02		
Borehole at Clara	08/01/1996	12:55:00	0.01	6.9	< 0.003	22.3		340		65		2	18		19.9	409	8.1	1.5		< 0.06	< 0.02		< 0.02		
Borenoie at Ciara	50,01,1770	12.55.00	0.01	5.7	0.005	22.5		240				-	10				0.1			0.00	0.02		0.02		
Borehole at Rathcash	08/01/1996	13:10:00	0.001	5.1	< 0.003	23.6		360		999		999	18		25	427	7.6	1.1		< 0.06	< 0.02		0.024		-
	00/01/1007	14.40.00	+ 0.01	0	+ 0.002			250		00		(0			7.0	222	0	2.7		0.002	.0.02		. 0.02		
Spring at Paulstown Castle	08/01/1996	14:40:00	< 0.01	8	< 0.003	15.4		259	>	80	>	60	~	17:-:11	7.9	333	8	2.7		0.082	< 0.02		< 0.02		
Spring at Clomantagh	09/01/1996	10:40:00	0.00	5.8	0.032	15.0		217	~	200	>	100	/	VISIDIE	4.2		0.0	1		0.95	0.14		0.077		
Borehole at Devemoer	09/01/1990	11:00:00	0.037	5 1	< 0.003	23.1		J1/ //2	/-	3Z 000		000	10		37.0		0.0	4.2		< 0.06	< 0.02		0.020		
Borenoie at Bawnmore	09/01/1990	11:50:00	0.015	3.1	~ 0.003	23.0		445		999		999	18		57.9		8.0	2.3		~ 0.00	~ 0.02		0.059		

Source	Sampling Date	Sampling Time	Cadmium	Mercury Nicke	I Fluoride	e OMCTSiloxane	Comments1		Comments2	Comments3
			mg/1Cd	mg/1 rig mg/1 N	ni mg/ir	µg/1				
Spring at Paulstown Castle	29/04/1992	11:38:00								
Spring at Paulstown Castle	01/07/1992	15:55:00								
Spring at Paulstown Castle	20/08/1992	15:15:00								
Spring at Paulstown Castle	18/11/1992	13:29:00								
Borehole at Castlecomer Yarns	02/06/1993	10.00.00	< 0.0001				Copy to Castlecomer Yar	rns Ltd.		
Spring at Paulstown Castle	02/06/1993		< 0.0001							
Borehole at Rathcash	02/06/1993		< 0.0001				Copy to Rathcash G.V	W.S.		
Springs at Bausheenmore	02/06/1993		< 0.0001							
Spring at Westcourt	02/06/1993	11.25.00	< 0.0001	0.007	,					
Galmoy 35	03/06/1993	11:25:00	0.0001	0.007						
Galmoy 35 Galmoy 37	03/06/1993	12:02:00	0.0001	< 0.001	1					
Galmoy 25	03/06/1993	12:15:00	0.0001	0.005						
Galmoy 202	03/06/1993	12:55:00	0.0001	< 0.00	1					
Borehole at Bawnmore	03/06/1993	16:00:00	0.0001	< 0.00	1					
Spring at Clomantagh	10/06/1993	11:40:00	< 0.0001							
Borehole at Dunmore	10/06/1993	12:28:00	< 0.0001							
Spring Toberpatrick Urlingford	15/06/1993	10:45:00	< 0.0001							
Borehole at Kilmanagh	15/06/1993	12:00:00	< 0.0001							
Borehole at Dunmore S/G	15/06/1993	14:30:00	< 0.0001							
Borehole at Kilkenny Mar	15/06/1993	15:00:00	< 0.0001							
Borehole at Windgar	01/07/1993	15-55-00								
Galmov	08/11/1993	11:15:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	11:45:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	12:20:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	12:40:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	13:50:00	< 0.0001	< 0.00	1	-	Falcan ofter well was numned for or	mravimataly 1.17		
Gaimoy	08/11/1995	13.55.00					hours.	proximatery 1 172		
Galmoy	08/11/1993	14:44:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	14:52:00	< 0.0001	< 0.00	1					
Galmoy	08/11/1993	15:15:00	< 0.0001	< 0.00	1					
Spring Toberpatrick Urlingford	09/11/1993	11:45:00	< 0.0001	< 0.00	1					
Borehole at Castlecomer Yarns	09/11/1993	12:35:00								
Spring at Paulstown Castle	09/11/1993	14:40:00								
Borehole at Clara	09/11/1993	15:15:00					167 Total Coliforms, 5 obvious co 162 probably	oliform colonies,	coliform colonies.	
Spring at Westcourt	09/11/1993	16:00:00					p			
Borehole at Dunmore	10/11/1993	10:30:00	< 0.0001							
Borehole at Dunmore S/G	10/11/1993	10:55:00	< 0.0001							
Borehole at Kilkenny Mar	10/11/1993	11:15:00	< 0.0001				Constr Mr. Line Dol			
Springs at Bausheenmore	10/11/1993	12:22:00	< 0.0001				Copy to Mr. Liam Deta	aney.		
Borehole No 9 Thomastowr	10/11/1993	15:10:00	< 0.0001							
Borehole at Windgar	10/11/1993	15:50:00	< 0.0001							
Borehole at Avonmore Dairy	11/11/1993	11:30:00	< 0.0001				Chlorinated sample	e		
Rathcash, Clifden, Co. Kilkenny	08/12/1993	09:45:00	< 0.0001							
Spring at Paulstown Castle	10/11/1994	11:25:00	< 0.0002				High iron and alayatad manganasa	levels leading to		
Graigue, Callan.	12/01/1995		< 0.0003				high turbidity.	ievers leading to		
Spring at Paulstown Castle	23/01/1995	15:45:00					Interference < mixed background	l colonies (non<	Coliform plate.	
Spring at Paulstown Castle	16/10/1995	15:23:00					Interference from background co	lonies on Total		
Spring at radiatown caste	10/10/1995	15.25.00					Coliform plate.			
Borehole at Castlecomer Yarns	08/01/1996	11:10:00								
Borehole at Dunmore	08/01/1996	11:30:00					Total Coliform plate overgroups wit	th non≤ coliforme		
Borenoie at Dunmore S/G	08/01/1996	12:00:00					comorni piate overgrown wil	an non ~ contonnis.		
Borehole at Kilkenny Mar	08/01/1996	12:15:00				-				
Borehole at Clara	08/01/1996	12:55:00				(Copy to: Paddy Coogan, Clifden, C	lara, Co. Kilkenny		
Borehole at Rathcash	08/01/1996	13:10:00					Copy to: Mr. Joe Pyke, Ratcash	n, Clifden, Co.		
	00/01/100						Kilkenny.			
Spring at Paulstown Castle	08/01/1996	14:40:00							Spring in farmyard cample taken at our	100
Spring at Ciomaniagh Spring Toberpatrick Urlingford	09/01/1996	11:40:00							opring in farmyard, sample takeli at surfa	
Borehole at Bawnmore	09/01/1996	11:30:00								

Source	Sampling Date	Sampling Time	То	Ref No	Sampling Location	Taken By	Lab No	EPARef Stn Grid Ref	Water Supply	Public/Group/Private	Temperature	Odour 0 1/2/3	Colour pH Hazen	Conductivity µS/cm	Turbidity NTU	TOC mg/l C	Ammonia mg/l N
Borehole at Galmov	09/01/1996	12:40:00	Kilkenny Co. Co.	KK00200	Leahy's House, Galmoy	C. Murrav	92	KIK17 23020 17120	Galmov	Group	8.6	1	5 7.3	779	0.1	1.8	< 0.01
Borehole at Kilmanagh	09/01/1996	14:20:00	Kilkenny Co. Co.	KK01400	In pumphouse	C. Murray	93	KIK45 23930 15250	Kilmanagh/Ballycuddihy	Group	8.2	1	5 7.6	645	0.1	2.3	0.021
Spring at Westcourt	09/01/1996	15:10:00	Kilkenny Co. Co.	KK00800	Spring at Earlsland, Westcourt, Callan	C. Murray	94	KIK91 S 407 442	Callan	Public	11.1	1	5 7.3	704	0.1	2.9	< 0.01
Borehole at Windgar	09/01/1996	15:40:00	Kilkenny Co. Co.	KK01900	Overflow from borehold	C. Murray	95	24200 13580	Farm supply	Private	11	1	5 7.4	380	0.2	< 0.12	0.023
Spring at Carrigeen,	15/01/1996	13:00:00	Kilkenny Co. Co.		Keoghans Field, Threecastles	J. Jennings	135					2	15 8	1045			0.03
Belview	27/02/1996	14:15:00	Kilkenny County Counci		Well No.2 for proposed new water supply	Brian Connor	763		Belview proposed				5 6.8	351			< 0.01
Belview	29/02/1996	11:45:00	Kilkenny County Counci		Well No.2 for proposed new water supply	Brian Connor	822		Belview proposed			1	5 6.7	359			< 0.01
Belview No. 2	07/03/1996	16:00:00	Kilkenny Co Co		Belview Proposed water supply Well No. 2	Brian Connor	973					1	5 6.7	365			
	14/02/1000	11 00 00				D: C	1050							2.57			
Belview No. 2	14/03/1996	11:00:00	Kilkenny Co Co		Belview Proposed water supply well No. 2	Brian Connor	1050					1	5 6./	357			< 0.01
Belview No. 2	25/03/1996	14:10:00	Kilkenny Co Co		Belview Proposed water supply well No. 2	Brian Connor	1137					1	5 6.4	290		0.67	< 0.01
Belview No. 1	25/03/1996	15:00:00	Kilkenny Co Co		Belview Proposed water supply well No.	Brian Connor	1130					1	5 6.5	290		0.67	< 0.01
Dunmara Walls	02/07/1006	10:10:00	Kilkonny Co Co		Berview Proposed water supply well No. 1	C Murray	2526					1	5 75	209 651		0.15	< 0.01
Dunmore Wells	02/07/1990	10:15:00	Kilkenny Co. Co.		Lashu'a	C. Murray	2530					1	10 92	412		< 0.13	< 0.01
Dunmore Wells	02/07/1990	10:15:00	Kilkenny Co. Co.		O'Duvers	C. Murray	2537					2	5 75	513		< 0.12	0.03
Dunmore Walls	02/07/1990	10:15:00	Kilkenny Co. Co.		Tom Langtons	C. Murray	2530					2	3 7.3 10 7.0	250		< 0.12	0.03
Dunmore Wells	02/07/1996	10:55:00	Kilkenny Co. Co.		McDermotts	C Murray	2540					1	10 7.9	599		0.69	< 0.02
Dunmore Wells	02/07/1996	11:10:00	Kilkenny Co. Co.		Nolans	C Murray	2540					1	5 73	841		0.61	< 0.01
Dunmore Wells	02/07/1996	11:30:00	Kilkenny Co. Co.		O'Neill's	C Murray	2542					1	10 7.4	700		0.01	< 0.01
Dunmore Wells	02/07/1996	11:45:00	Kilkenny Co. Co.		Fitzpatrick's	C Murray	2543					1	5 74	737		0.53	< 0.01
Dunmore Wells	02/07/1996	12:10:00	Kilkenny Co. Co.		Canteen in Landfdill Site	C Murray	2544					1	15 7.4	563		2.07	0.05
Dunmore Wells	02/07/1996	12:35:00	Kilkenny Co. Co.		Holohan's	C Murray	2545					2	15 7.4	633		1.94	0.42
Dunmore Wells	02/07/1996	12:45:00	Kilkenny Co. Co.		Murphy's/Stacks	C Murray	2546					2	50 7.5	689		< 0.12	0.013
Bellview	02/10/1996	11:10:00	Kilkenny Co. Co.		Well No. 3.	Brian Connor	3853					1	5 6.6	554	0.26	=	< 0.01
Bellview	03/10/1996	10:30:00	Kilkenny Co. Co.		Well No. 3.	Brian Connor	3873					1	5 6.4	565	0.2		
Bellview Water Supply	08/10/1996	10:30:00	Kilkenny Co. Co.		Well No. 3.	B. O'Connor	3971					1	5 6.5	551			< 0.01
Spring at Paulstown Castle	09/01/1997	12:17:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle	P. Mullins	106	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	9.3	1	< 5 7.3	613	0.23	1.9	< 0.01
	10/01/1005	10.15.00			B 1111 6	D 14 11		G 500 411			0.6			120	0.00		
Thomastown	10/01/1997	10:17:00	Kilkenny Co. Co.	KK01(00	Borehole No. 5	P. Mullins	111	S 589 411	and a	D 11	9.6	1	< 5 7.1	439	0.09	1.3	< 0.01
Borenoie No.9, Thomastown	10/01/1997	10:05:00	Klikenny Co. Co.	KK01600	At pumpnouse	P. Mullins	112	KIK32 25890 14160	I nomastown	Public	9.4	1	< 5 /.5	/21	0.11	1.5	
Borehole at Dunmore	13/01/1997		Kilkenny Co. Co.	KK00700	C. Murray's house. Dunmore	C Murray	216	24910 16200	Dunmore	Group							
Dorenoic at Dumnore	15/01/1777		Kinkeniny Co. Co.	100700	C. Multury, 5 nouse, 15 unnore.	C. Munuy	210	24/10 10200	Dummore	oroup							
Spring at Paulstown Castle	17/02/1997	11:30:00	Kilkenny Co. Co.	KK00600	Spring at Paulstown Castle	C. Murray	726	KIK46 S 660 570	Gowran/Goresbr./P-town	Public	10.3	1	< 5 7.3	607		0.6	< 0.1
Spring at Paulstown Castle Springs at Bausheenmore	17/02/1997 17/02/1997	11:30:00 12:30:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500	Spring at Paulstown Castle At source (springs at Bausheenmore)	C. Murray C. Murray	726 727	KIK46 S 660 570 KIK39 25520 14690	Gowran/Goresbr./P-town	Public Private	10.3 10.5	1	< 5 7.3 < 5 7.3	607 767		0.6 < 1	< 0.1 < 0.1
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt	17/02/1997 17/02/1997 17/02/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan	C. Murray C. Murray C. Murray	726 727 728	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public	10.3 10.5 11.3	1 1 1	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 < 1 < 1	< 0.1 < 0.1 < 0.1
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's	C. Murray C. Murray C. Murray M. Daly	726 727 728 1936	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private	10.3 10.5 11.3	1 1 1 1	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53	<0.1 <0.1 <0.1 2
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dummore	17/02/1997 17/02/1997 17/02/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's	C. Murray C. Murray C. Murray M. Daly	726 727 728 1936	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private	10.3 10.5 11.3	1 1 1 1	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53	<0.1 <0.1 <0.1 2
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's	C. Murray C. Murray C. Murray M. Daly M. Daly	726 727 728 1936 1937	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private	10.3 10.5 11.3	1 1 1 1 3	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8	<0.1 <0.1 <0.1 2 0.5
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore' Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No & Stack	C. Murray C. Murray C. Murray M. Daly M. Daly	726 727 728 1936 1937	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr/P-town Callan	Public Private Public Private Private Private	10.3 10.5 11.3	1 1 1 3	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8 0.1	< 0.1 < 0.1 < 0.1 2 0.5 < 0.01
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly	726 727 728 1936 1937 1938	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private	10.3 10.5 11.3	1 1 1 3 3	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8 0.1	<0.1 <0.1 <0.1 2 0.5 <0.01
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly	726 727 728 1936 1937 1938 1939	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3	1 1 1 3 3 2	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8 0.1	<0.1 <0.1 <0.1 2 0.5 <0.01 17.6
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly	726 727 728 1936 1937 1938 1939	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private	10.3 10.5 11.3	1 1 1 3 3 2	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8 0.1	<0.1 <0.1 <0.1 2 0.5 <0.01 17.6
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly M. Daly	726 727 728 1936 1937 1938 1939 1940	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private Private	10.3 10.5 11.3	1 1 1 3 3 2 2	<5 7.3 <5 7.3 <5 7.3	607 767 702		0.6 <1 <1 0.53 1.8 0.1 5.4	<0.1 <0.1 <0.1 2 0.5 <0.01 17.6 12.1
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997	11:30:00 12:30:00 14:05:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Bacdumix	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly	726 727 728 1936 1937 1938 1939 1940	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private Private	10.3 10.5 11.3	1 1 1 3 3 2 2	<5 7.3 <5 7.3 <5 7.3	607 767 702	0.65	0.6 <1 <1 0.53 1.8 0.1 5.4	$ \begin{array}{r} < 0.1 \\ < 0.1 \\ < 0.1 \\ \hline \\ 2 \\ \hline \\ 0.5 \\ < 0.01 \\ \hline \\ 17.6 \\ \hline \\ 12.1 \\ \hline \\ 1.5 \\ \end{array} $
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 10:45:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray	726 727 728 1936 1937 1938 1939 1940 1944	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private Private	10.3 10.5 11.3	1 1 1 3 3 2 2 1	<5 7.3 <5 7.3 <5 7.3	607 767 702 631	0.65	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22	
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 10:45:00 10:45:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1939 1940 1944 1945	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8	1 1 1 3 3 2 2 1 2	<5 7.3 <5 7.3 <5 7.3 5 7.7 15 7.6	607 767 702 631 473	0.65	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 10:45:00 10:55:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8	1 1 1 3 3 2 2 1 2	<5 7.3 <5 7.3 <5 7.3 <5 7.3 5 7.7 15 7.6	607 767 702 631 473	0.65	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09	<pre>< 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8 9.7	1 1 1 3 3 2 2 1 2 1 2 1	<5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.7 <15 7.6 <15 8	607 767 702 631 473 352	0.65 3.8 12	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 10:45:00 10:45:00 10:55:00 11:05:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bawine's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7	1 1 1 3 3 2 2 1 2 1 2 1 2	<5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.7 <5 7.7 <15 7.6 <15 8 <5 7.4	607 767 702 631 473 352 656	0.65 3.8 12 0.42	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.22	 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:15:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1947	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8 9.7 9.8	1 1 1 3 3 2 2 1 2 1 2 1 2	<5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.7 <5 7.7 <15 7.6 <15 8 <5 7.4	607 767 702 631 473 352 656	0.65 3.8 12 0.42	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.33	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1947	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8 9.7 9.8 10.8	1 1 1 3 3 2 2 1 2 1 2 1 2 1 2 2 2	<5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.1 <5 7.7 <15 7.6 </td <td>607 767 702 631 473 352 656 615</td> <td>0.65 3.8 12 0.42</td> <td>0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.33 0.39</td> <td><pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01</pre></td>	607 767 702 631 473 352 656 615	0.65 3.8 12 0.42	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.33 0.39	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:45:00 10:55:00 11:05:00 11:15:00 11:25:00	Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1947 1948	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8	1 1 1 3 3 2 2 1 2 1 2 1 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 5 7.7 5 7.7 15 7.6 15 8 5 7.4 5 7.3	607 767 702 631 473 352 656 615	0.65 3.8 12 0.42	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline 1.8 \\ 0.1 \\ \hline 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ \end{array}$	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01</pre>
Spring at Paulstown Castle Spring at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:15:00 11:25:00 12:00:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1947 1948 1949	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8	1 1 1 3 3 2 2 1 2 1 2 1 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 5 7.7 5 7.7 15 7.6 15 8 5 7.4 5 7.3	607 767 702 631 473 352 656 615 794	0.65 3.8 12 0.42 0.19	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.33 0.39 0.64	<pre>< 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01 < 0.01</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00 11:25:00 11:25:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8 9.7 9.8 10.8 10.8	1 1 1 3 3 2 2 2 1 2 1 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.4 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 6 7.3 < 6 7.3	607 767 702 631 473 352 656 615 794	0.65 3.8 12 0.42 0.19	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline \\ 1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ \hline \\ 0.08 \\ 0.33 \\ \hline \\ 0.39 \\ 0.64 \\ \hline \\ 0.64 \\ \hline \\ 0.00 \end{array}$	<pre>< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01 < 0.01 < 0.01</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:25:00 11:25:00 12:10:00	Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947 1948 1949	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9	1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 2 1	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.4	607 767 702 631 473 352 656 615 794 700	0.65 3.8 12 0.42 0.19 0.42	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline \end{array}$ $\begin{array}{c} 1.8 \\ 0.1 \\ \hline \end{array}$ $\begin{array}{c} 5.4 \\ 0.22 \\ 0.09 \\ \hline \end{array}$ $\begin{array}{c} 0.08 \\ 0.33 \\ 0.39 \\ \hline \end{array}$ $\begin{array}{c} 0.64 \\ 0.09 \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ \hline \\ < 0.1 \\ 2 \\ \end{array}$
Spring at Paulstown Castle Spring at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:15:00 11:25:00 12:00:00 12:15:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitznatricks	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947 1948 1949	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4	1 1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 5 7.7 15 7.6 15 8 5 7.4 5 7.3 5 7.4 5 7.3 5 7.4 5 7.3 5 7.4 5 7.4 5 7.4 5 7.3 5 7.4 5 7.4 5 7.4 5 7.3 5 7.4 6 7.4 6 7.4 6 7.4 7 7.4 7 8 7.4	607 767 702 631 473 352 656 615 794 700 736	0.65 3.8 12 0.42 0.19 0.42 0.21	0.6 <1 <1 0.53 1.8 0.1 5.4 0.22 0.09 0.08 0.33 0.39 0.64 0.09 0.43	<pre>< 0.1 < 0.5 < 0.01 </pre> 12.1 <pre>1.5 0.05 0.04 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 </pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00 11:25:00 12:00:00 12:30:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1944 1945 1946 1947 1948 1949 1950	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4	1 1 1 3 3 2 2 2 1 2 1 2 2 2 1 2 2 2 1 2 2 1 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.4 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3	607 767 702 631 473 352 656 615 794 700 736	0.65 3.8 12 0.42 0.19 0.42 0.21	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline 0.1 \\ \hline 0.1 \\ \hline 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ \hline 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ \end{array}$
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:25:00 11:25:00 12:00:00 12:15:00 12:30:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1944 1945 1946 1947 1948 1949 1950 1951	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4 10.7	1 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.4 < 5 7.5 < 6 10 10 10 10 10 10 10 10 10 10 10 10 10	607 767 702 631 473 352 656 615 794 700 736 816	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline \end{array}$ $\begin{array}{c} 1.8 \\ 0.1 \\ \hline \end{array}$ $\begin{array}{c} 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ \hline \end{array}$ $\begin{array}{c} 0.33 \\ 0.33 \\ 0.39 \\ \hline \end{array}$ $\begin{array}{c} 0.64 \\ 0.09 \\ \hline \end{array}$ $\begin{array}{c} 0.43 \\ 0.67 \\ \hline \end{array}$	<pre>< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 2 0.5 < 0.01 17.6 12.1 1.5 0.05 0.04 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1.41</pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:15:00 11:25:00 12:00:00 12:15:00 12:30:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947 1948 1949 1950 1951	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4	1 1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.4 < 6 10 10 10 10 10 10 10 10 10 10 10 10 10	607 767 702 631 473 352 656 615 794 700 736 816	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ \hline \\ 0.67 \\ \hline \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ 2 \\ \end{array}$ $0.5 \\ < 0.01 \\ \hline 17.6 \\ 12.1 \\ \hline 1.5 \\ 0.05 \\ 0.04 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ \hline 1.41 \\ \hline$
Spring at Paulstown Castle Spring at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00 11:25:00 12:00:00 12:15:00 12:30:00 15:30:00 15:45:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1944 1945 1946 1947 1948 1949 1950 1951 1952	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4 10.7 12	1 1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 7.6 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.2 < 7.3 < 7.3	607 767 702 631 473 352 656 615 794 700 736 816 640	0.65 3.8 12 0.42 0.42 0.21 0.11 69	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ 1.88 \\ \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ 2 \\ \end{array}$ $\begin{array}{c} 0.5 \\ < 0.01 \\ \hline 17.6 \\ \hline 12.1 \\ \hline 1.5 \\ 0.05 \\ \hline 0.04 \\ < 0.01 \\ \hline < 0.01 \\ < 0.01 \\ \hline < 0.01 \\ \hline < 0.01 \\ \hline 1.41 \\ \hline 0.33 \end{array}$
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:05:00 11:25:00 12:30:00 12:30:00 15:30:00 15:45:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Mumbur	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1944 1945 1946 1947 1948 1949 1950 1951 1952	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.9 10.4 10.7 12 11.5	1 1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 3	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 15 8 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 7 7.3 < 7 7.3 < 7 7.3 < 7 7.3 < 7 7.3 < 7 7.3 < 7 7.4 < 7 7.4 < 7 7.4 < 7 7.4 < 7 7.7 < 7 7.7 < 7 7.7	607 767 702 631 473 352 656 615 794 700 736 816 640 665	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline \end{array}$ $\begin{array}{c} 1.8 \\ 0.1 \\ \hline \end{array}$ $\begin{array}{c} 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ \hline \end{array}$ $\begin{array}{c} 0.33 \\ 0.33 \\ 0.39 \\ \hline \end{array}$ $\begin{array}{c} 0.64 \\ 0.09 \\ 0.43 \\ \hline \end{array}$ $\begin{array}{c} 0.67 \\ 1.88 \\ 0.26 \\ \hline \end{array}$	<pre>< 0.1 < 1.5 </pre>
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:25:00 12:30:00 12:30:00 15:45:00 15:55:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Murphys	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4 10.7 12 11.5	1 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 3	<5 7.3 <5 7.3 <5 7.3 <5 7.3 <5 7.7 <5 7.7 <p< td=""><td>607 767 702 631 631 473 352 656 615 794 700 736 816 640 665</td><td>0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16</td><td>$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ \hline 0.1 \\ \hline 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ \hline 1.88 \\ 0.26 \\ \end{array}$</td><td>$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ 2 \\ \end{array} \\ \hline 0.5 \\ < 0.01 \\ \hline 17.6 \\ 12.1 \\ \hline 1.5 \\ 0.05 \\ 0.04 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ \hline 1.41 \\ \hline 0.33 \\ < 0.01 \\ \end{array}$</td></p<>	607 767 702 631 631 473 352 656 615 794 700 736 816 640 665	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ \hline 0.1 \\ \hline 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ \hline 1.88 \\ 0.26 \\ \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ 2 \\ \end{array} \\ \hline 0.5 \\ < 0.01 \\ \hline 17.6 \\ 12.1 \\ \hline 1.5 \\ 0.05 \\ 0.04 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ \hline 1.41 \\ \hline 0.33 \\ < 0.01 \\ \end{array}$
Spring at Paulstown Castle Spring at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00 11:25:00 12:30:00 12:15:00 15:30:00 15:45:00 15:55:00 14:35:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Murphys Canteen at landfill site.	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.5 11.3 10.2 10.8 9.7 9.8 10.8 10.8 10.9 10.4 10.7 12 11.5 11.5	1 1 1 1 3 3 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 15 7.6 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 7.3 < 7.3 < 7.7 < 7.9 < 7.9	607 767 702 631 473 352 656 615 794 700 736 816 640 665 1.8	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16 100	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ 1.88 \\ 0.26 \\ \end{array}$	 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.01 < 1.41 0.33 < 0.01 < 110
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:15:00 11:25:00 12:00:00 12:30:00 15:30:00 15:45:00 15:55:00 14:35:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore' Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Murphys Canteen at landfill site.	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4 10.7 12 11.5	1 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 3 3	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.7 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 7 7.7 < 7.9 < 7.9	607 767 702 631 473 352 656 615 794 700 736 816 640 665 1.8	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16 100	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ \hline \end{array}$ $1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ \hline \\ 1.88 \\ 0.26 \\ \hline \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ \end{array}$
Spring at Paulstown Castle Springs at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:05:00 11:25:00 12:15:00 12:30:00 15:45:00 15:55:00 14:35:00 14:35:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Murphys Canteen at landfill site.	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.2 10.8 9.7 9.8 10.8 10.9 10.4 10.7 12 11.5 12.4	1 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 3 3 3 2 3 3 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 5 7.6 < 15 7.6 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 7 7.4 < 7 7.9 < 7.2	607 767 702 631 473 352 656 615 794 700 736 816 640 665 1.8 994	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16 100 6.1	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ \hline 0.1 \\ \hline 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ \hline 0.09 \\ 0.43 \\ 0.67 \\ \hline 1.88 \\ 0.26 \\ \hline 7.2 \\ \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ 2 \\ \end{array} \\ \hline 0.5 \\ < 0.01 \\ \hline 17.6 \\ 12.1 \\ \hline 1.5 \\ 0.05 \\ 0.04 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ \hline 0.01 \\ \hline 0.33 \\ < 0.01 \\ \hline 1.41 \\ \hline 0.33 \\ < 0.01 \\ \hline 110 \\ \hline 0.5 \\ \end{array}$
Spring at Paulstown Castle Spring at Bausheenmore Spring at Westcourt Dunmore	17/02/1997 17/02/1997 17/02/1997 09/05/1997 09/05/1997 09/05/1997 09/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997 12/05/1997	11:30:00 12:30:00 14:05:00 14:05:00 10:45:00 10:55:00 11:05:00 11:15:00 11:25:00 12:00:00 12:15:00 12:30:00 15:45:00 15:45:00 14:35:00 14:50:00	Kilkenny Co. Co. Kilkenny Co. Co.	KK00600 KK00500 KK00800	Spring at Paulstown Castle At source (springs at Bausheenmore) Spring at Earlsland, Westcourt, Callan Doyle's Holohan's No. 8 Stack Well in landfill site Unused Borehole, Doyle's Field Readymix O'Dwyers Langtons Bergin's McDermott's Nolans O'Neill's Fitzpatricks Doyle's Holohan's Stacks/Murphys Canteen at landfill site. New Bore at landfill site.	C. Murray C. Murray C. Murray M. Daly M. Daly M. Daly M. Daly C. Murray C. Murray	726 727 728 1936 1937 1938 1939 1940 1944 1945 1946 1945 1946 1947 1948 1949 1950 1951 1951 1952 1953 1954 1955	KIK46 S 660 570 KIK39 25520 14690 KIK91 S 407 442	Gowran/Goresbr./P-town Callan	Public Private Public Private Private Private Private	10.3 10.5 11.3 10.5 11.3 10.2 10.8 9.7 9.8 10.8 10.8 10.8 10.9 10.4 10.7 12 11.5 11.5 11.5 12.4 10.9	1 1 1 1 3 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 3 3 2 3 2 3 2	< 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.3 < 5 7.7 < 5 7.7 < 15 7.6 < 15 7.6 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 5 7.4 < 5 7.3 < 7.2 < 7.2 < 5 7.2	607 767 702 631 473 352 656 615 794 700 736 816 640 665 1.8 994	0.65 3.8 12 0.42 0.19 0.42 0.21 0.11 69 16 100 6.1	$\begin{array}{c} 0.6 \\ < 1 \\ < 1 \\ 0.53 \\ 1.8 \\ 0.1 \\ \hline \\ 5.4 \\ 0.22 \\ 0.09 \\ 0.08 \\ 0.33 \\ 0.39 \\ 0.64 \\ 0.09 \\ 0.43 \\ 0.67 \\ 1.88 \\ 0.26 \\ \hline \\ 7.2 \\ 0.64 \\ \end{array}$	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ \end{array}$

Source	Sampling Date	Sampling Time	o-Phosphate	Nitrate mg/LN	Nitrite mg/1 N	Chloride mg/LCl	Ca Hardness Alkalin	ity TCS	Total Coliforn	ns FCS Fecal Colife	orms Sulphate	Dry Residue	Sus_Solids	Magnesium mg/l Mg	Total Hardness	Sodium 1	Potassium	Aluminium mg/LAL	Iron mg/l Fe	Manganese mg/l Mp	Copper mg/l Cu	Zinc (Chromium Lead
Borehole at Galmov	09/01/1996	12:40:00	0.002	9.6	< 0.003	27.7	111g/1 CaCO3 111g/1 CaC	.03	999	999	20	ilig/1	ilig/1	31.8	ling/1 CaCO3	7 9	0.8	ilig/1 Al 1	< 0.06	< 0.02	ilig/1Cu	0.061	Ing/TCI Ing/TFU
Borehole at Kilmanagh	09/01/1996	14:20:00	0.099	3.5	< 0.003	20.4	327	>=	15	>= 2	11			18.4		9.1	0.9		< 0.06	< 0.02		0.035	
Spring at Westcourt	09/01/1996	15:10:00	0.02	3.6	< 0.003	24.1	365		52	64	15			29.2		9.5	0.9		< 0.06	< 0.02		0.028	
Borehole at Windgar	09/01/1996	15:40:00	0.122	1.8	< 0.003	16	164		999	999	4			19.2		6.9	1		< 0.06	< 0.02		0.03	
Spring at Carrigeen,	15/01/1996	13:00:00	0.1	36.2	0.014	44	183		000	000	25				102								
Belview	29/02/1996	11:45:00	< 0.02	41	< 0.004	32.7	81		999	999					83								
Belview No. 2	07/03/1996	16:00:00					114		1	999					116				< 0.06	< 0.02		0.08	
Palview No. 1	14/02/1006	11:00:00	< 0.02	4.5	< 0.004	20	07		14	0									< 0.06	< 0.02		0.026	
Belview No. 2 Belview No. 2	23/03/1996	14:10:00	< 0.02	4.3	< 0.004	28	97		2	999									< 0.06	< 0.02		0.026	
Belview No. 1	25/03/1996	15:00:00	< 0.02	6.8	0.004	28	49		999	999									< 0.06	< 0.02		0.314	
Belview No. 1	27/03/1996	13:00:00	< 0.02	6.7	< 0.004	28	64		1	999													
Dunmore Wells	02/07/1996	10:10:00	< 0.02	< 0.1	0.004	20	317		999	999	29												
Dunmore Wells	02/07/1996	10:15:00	< 0.02	1.5	0.007	16	191	>=	3	999	11												
Dunmore Wells	02/07/1996	10:35:00	< 0.02	< 0.1	0.003	13	164	>	80	999	4												
Dunmore Wells	02/07/1996	10:55:00	< 0.02	6.5	0.001	19	283	>=	3	6	15												
Dunmore Wells	02/07/1996	11:10:00	0.22	12	0.002	37	352	>	80	15	25												
Dunmore Wells	02/07/1996	11:30:00	< 0.02	7.4	0.002	28	323		999	999	15												
Dunmore Wells	02/07/1996	12:10:00	0.14	9.2	0.002	28	330	~	80	> 60	25												
Dunmore Wells	02/07/1996	12:35:00	0.09	< 0.1	0.015	19	322	· · ·	2	999	20												
Dunmore Wells	02/07/1996	12:45:00	< 0.02	< 0.1	0.005	21	323	>=	68	999	30												
Bellview	02/10/1996	11:10:00	< 0.02	19.3	0.003	43			999	999				21.3		22.5	2.6		0.12	0.033		0.184	
Bellview Bellview Water Supply	03/10/1996	10:30:00	0.01	22	0.004	41	68	~=	1	999				21.3		23.3	2.8		0.087	0.034	0.112	0.074	
Benview water Supply	08/10/1990	10.30.00	0.01	22	0.004	41	08	~-	2	339				21.5		22.0	2.0		0.087	0.029		0.074	
Spring at Paulstown Castle	09/01/1997	12:17:00	0.01	7	0.001	28	252		21	1	19												
Thomastown	10/01/1997	10.17.00	0.01	44	< 0.004	23	248		999	999													
Borehole No.9, Thomastown	10/01/1997	10:05:00	0.03	5.7	< 0.004	39	248		999	999													
Darshala at Dumman	12/01/1007																						
Borenoie at Dunmore	13/01/1997																						
Spring at Paulstown Castle	17/02/1997	11:30:00	< 0.02	6.4	0.01	22	245		200	22				11.5		8.7	2.6						
Springs at Bausheenmore	17/02/1997	12:30:00	< 0.02	7.1	< 0.004	26	345	>	80	50				29.5		8.7	3.6						
Dunmore	09/05/1997	14:05:00	< 0.02	4.8	< 0.001	45	329		3	2				23.5		8.3	0.9						
Dunmore	09/05/1997		0.19	< 0.1	0.005	18																	
Dunmore	09/05/1997		< 0.02	< 0.1	< 0.003	21																	
Dunmore	09/05/1997		0.87	11.3	2	295																	
Dumore	0)/05/1997		0.07	11.5	2	275																	
Dunmore	09/05/1997		0.08	3.3	0.1	29																	
Dunmore	12/05/1997	10:45:00	0.01	0.232	0.004	20			15	999													
 Dumm - m-	12/05/1007	10.55.00	0.05	0.15	0.002	16			27	(
Dunmore	12/03/1997	10.55.00	0.05	0.15	0.003	10		~	57	0													
Dunmore	12/05/1997	11:05:00	0.01	0.16	0.004	13			999	999													
Dunmore	12/05/1997	11:15:00	< 0.02	16.2	0.007	23		>=	6	999													
	10/05/1005				0.077																		
Dunmore	12/05/1997	11:25:00	< 0.02	7.5	0.003	20		>=	13	999													
Dunmore	12/05/1997	12:00:00	0.17	12	0.004	30		>=	210	999													
Dunmore	12/05/1997	12:15:00	0.01	82	0.003	27				000													
Builliore	12/05/1997	12.15.00	0.01	0.2	0.005	27				,,,,													
Dunmore	12/05/1997	12:30:00	0.165	10.1	0.003	26			750	300													
Dunmore	12/05/1997	15:30:00	0.015	1.3	0.031	44		>	80	4													
Dunmore	12/05/1997	15:45:00	0.11	0.15	0.010	18																	
Duimore	12/03/1997	13.43:00	0.11	0.15	0.019	18																	
Dunmore	12/05/1997	15:55:00	< 0.02	0.18	2.2	19		>=	16	999													
Dunmore	12/05/1997	14:35:00	3	5.6	3.8	353		>	2000	> 2000													
D	12/05/1007	14.50.00	0.5	0.0	0.41	21																	
Dunmore	12/05/1997	14:50:00	0.5	0.9	0.41	31				> 600													
Dunmore	12/05/1997	15:10:00	< 0.02	11	0.002	19		>=	9	999													

Source	Sampling Date	 Sampling Time 	Cadmium Mercury Nicke	Fluoride	e OMCTSiloxane	Comments1	Comments2	Comments3
D 11 (C)	00/01/100/	12 40 00	mg/ICd mg/IHg mg/IN	1 mg/lF	µg/l			
Borehole at Galmoy	09/01/1996	12:40:00						
Spring at Westcourt	09/01/1996	14:20:00						
Borehole at Windgar	09/01/1996	15:40:00						
Spring at Carrigeen,	15/01/1996	13:00:00				Very high Nitrate.	High Conductivity and chloride.	
Belview	27/02/1996	14:15:00				Sample taken after pumping for 1 hour.		
Belview	29/02/1996	11:45:00						
Belview No. 2	07/03/1996	16:00:00				Sample delivered to the laboratory on 8/3/96 by		
D-him N- 2	14/02/1006	11.00.00				Finbar Coughlan.		
Belview No. 2	23/03/1996	14:10:00						
Belview No. 1	25/03/1996	15:00:00						
Belview No. 1	27/03/1996	13:00:00						
Dunmore Wells	02/07/1996	10:10:00						
Dunmore Wells	02/07/1996	10:15:00						
Dunmore Wells	02/07/1996	10:15:00						
Dunmore Wells	02/07/1996	10:35:00						
Dunmore Wells	02/07/1996	10:55:00						
Dunmore Wells	02/07/1996	11:10:00						
Dunmore Wells	02/07/1996	11:30:00						
Dunmore Wells	02/07/1996	12:10:00						
Dunmore Wells	02/07/1996	12:35:00						
Dunmore Wells	02/07/1996	12:45:00						
Bellview	02/10/1996	11:10:00				Calcium Hardness = 152 mg/l CaCO3	Very high nitrate.	
Bellview	03/10/1996	10:30:00				Calcium Hardness = 144 mg/l CaCO3		
Bellview Water Supply	08/10/1996	10:30:00				Calcium Hardness = 144 mg/l CaCO3	Interference from background colonies on Total	Very high Nitrate.
	00/01/1007	12.17.00			e	as GC/MS Burga & Tran analyzas an constate chaot	Coliform plate.	
Spring at Paulstown Castle	09/01/1997	12:17:00			3	ee OC/MS Fuige & Trap analyses on separate sheet		
Thomastown	10/01/1997	10:17:00						
Borehole No.9, Thomastown	10/01/1997	10:05:00			S	ee GC/MS Purge & Trap analyses on separate sheet	 Octamethylcyclotetrasiloxane < 0.2 ug/l. 	
						0 1 C 003/03 AT 1 1	0	
Borehole at Dunmore	13/01/1997					Results on separate sheet.	Octamethylcyclotetrasiloxane 0.7 ug/l.	
Spring at Paulstown Castle	17/02/1997	11:30:00				Octamethylcyclotetrasiloxane = 0.3 ug/l.		
Springs at Bausheenmore	17/02/1997	12:30:00				Octamethylcyclotetrasiloxane = 1.7 ug/l.	K/Na Ratio = 0.41	
Spring at Westcourt	17/02/1997	14:05:00				Octamethylcyclotetrasiloxane = 1.4 ug/l.		
Dunmore	09/05/1997					Very high ammmonia.	Sample taken after land-fill leachate escaped to	Approximate ammonia concentration.
Dunmara	00/05/1007					Strong odour and high ammonia	groundwater. Sample taken after land-fill leachate escaped to	Approximate ammonia concentration
Dunnore	09/03/1997					Strong odour and mgh anniona.	groundwater.	Approximate annional concentration.
Dunmore	09/05/1997					Odour of sulphide.	Sample taken after land-fill leachate escaped to	Approximate ammonia concentration.
D	00/05/1007					Vory high TOC ammonia and nitrita regults <	groundwater.	Approximate ammonia concentration
Dunmore	09/05/1997					serious contamination.	groundwater.	Approximate anniona concentration.
Dunmore	09/05/1997					Very high ammonia and high nitrite.	Sample taken after land-fill leachate escaped to	Approximate ammonia concentration.
							groundwater.	
Dunmore	12/05/1997	10:45:00				Ammonia >1.5 mg/l as N.	Sample taken after leachate at landfill site escaped to	Amended report, ammonia is >1.5 and not <1.5 as reported on 15/5/07
Dunmore	12/05/1997	10:55:00					Sample taken after leachate at landfill site escaped to	reported on 15/5/97.
Dunnore	12/03/1997	10.55.00					groundwater	
Dunmore	12/05/1997	11:05:00					Sample taken after leachate at landfill site escaped to	No coliforms detected but possible interference from
	12/05/1007	11.15.00					groundwater Sample taken after leachate at landfill site escaned to	suspended solids.
Dunmore	12/05/1997	11:15:00					groundwater	
Dunmore	12/05/1997	11:25:00					Sample taken after leachate at landfill site escaped to	
							groundwater	
Dunmore	12/05/1997	12:00:00					Sample taken after leachate at landfill site escaped to groundwater	Interference from suspended solids on the total coliform test
Dunmore	12/05/1997	12:15:00					Sample taken after leachate at landfill site escaped to	Background interference on the total coliform test.
							groundwater	
Dunmore	12/05/1997	12:30:00					Sample taken after leachate at landfill site escaped to	Very high coliform levels (total and faecal).
Durmoro	12/05/1007	15-20-00				High ammonia and nitrite concentrations	groundwater Sample taken after leachate at landfill site accound to	
Dunmore	12/05/1997	15:50:00				righ anniona and nutre concentrations.	groundwater	
Dunmore	12/05/1997	15:45:00			,	Very turbid. High ammonia indicitave of pollution.	Sample taken after leachate at landfill site escaped to	Interference from suspended solids on the coliform
						····	groundwater	tests (total & faecal).
Dunmore	12/05/1997	15:55:00				very turbid. High nitrite. Odour detected.	Sample taken after leachate at landfill site escaped to groundwater	Background interference on the total coliform test.
Dunmore	12/05/1997	14:35:00				Turbidity > 100 NTU and ammonia > 110 mg/l N.	Sample taken after leachate at landfill site escaped to	
						Very high coliform levels.	groundwater	
Dunmore	12/05/1997	14:50:00				High ammonia and nitrite levels.	Sample taken after leachate at landfill site escaped to	Interference on the total coliform test.
Dunmoro	12/05/1007	15-10-00					groundwater Sample taken after leachate at landfill site escaned to	Interference on the total coliform test
Dunmore	12/05/1997	15:10:00					sample taken after reachate at fandrin site escaped to	interference on the total conform test.

Source	Sampling Date	Sampling Time	То	Ref No	Sampling Location	Taken By	Lab No	EPARef Stn Grid Ref	Water Supply	Public/Group/Private	Temperature	Odour (Colour	pH C	Conductivity	/ Turbidity	TOC mg/LC	Ammonia mg/1 N
Denskala et Denna en	18/06/1007	11.45.00	Killenne Ca. Ca	VV00700	C Mumuus haven Dumman	C Mumu	2620	24010 16200	D	C	15	1/2/3	nazen	7.4	µ5/cm	NIU	mg/IC	mg/1 N
Dunmore	08/07/1997	11:45:00	Kilkenny Co. Co.	KK00700	C. Murray,s nouse, Dunmore. Stacks	M Daly	2630	24910 16200	Dunmore	Group	15	2	60	7.6	659	7.5		< 0.01
	00/07/19997	11.50.00	renkenny eo. eo.		Sticks	ini. Duly	2,775					-	00	7.0	00)	7.0		. 0.01
Dunmore	08/07/1997	15:00:00	Kilkenny Co. Co.		Holohans	M. Daly	2974					1		7.3	639	72		0.4
Borehole at Kilmanagh	01/09/1997	10:24:00	Kilkenny Co. Co.	KK01400	In pumphouse	P. Mullins	3796	KIK45 23930 15250	Kilmanagh/Ballycuddihy	Group	14.4	1	< 5	7.5	641	0.26	0.4	< 0.01
Spring at Westcourt	01/09/1997	11:17:00	Kilkenny Co. Co.	KK00800	Spring at Earlsland, Westcourt, Callan	P. Mullins	3797	KIK91 S 407 442	Callan	Public	11.9	1	< 5	7.3	701	0.14	0.28	< 0.01
Borehole at Windgar	01/09/1997	11:54:00	Kilkenny Co. Co.	KK01900	Overflow from borehold	P. Mullins	3798	24200 13580	Farm supply	Private	11.3	1	< 5	7.3	386	0.39	0.07	< 0.01
Springs at Bausheenmore	01/09/1997	13:36:00	Kilkenny Co. Co.	KK00500	At source (springs at Bausheenmore)	P. Mullins	3799	KIK39 25520 14690		Private	11.9	1	20	7.4	717	2.6	3.3	< 0.01
Borehole at Dunmore S/G	01/09/1997	14:17:00	Kilkenny Co. Co.	KK01000	Canteen at Dunmore Sand & Grave	P. Mullins	3800	KIK53 25000 16020	Dunmore Sand & Gravel	Private	13.6	1	5	7.7	645	1	0.41	< 0.01
Borehole at Dunmore	01/09/1997	14:26:00	Kilkenny Co. Co.	KK00700	C. Murray,s house, Dunmore.	P. Mullins	3801	24910 16200	Dunmore	Group	16	1	< 5	7.4	643	0.14	0.34	< 0.01
Borehole at Kilkenny Mar	01/09/1997	15:13:00	Kilkenny Co. Co.	KK01300	Cattle holding shec	P. Mullins	3802	25070 15670	Kilkenny Mart	Private	16.7	1	60	8.4	130	27	3.2	0.03
Borehole at Galmoy	27/08/1997	11:19:00	Kilkenny Co. Co.	KK00200	Leahy's House, Galmoy	P. Mullins	3743	KIK17 23020 17120	Galmoy	Group	14.3	1	5	7.6	763	0.15	0.55	< 0.01
Borenole at Bawnmore	27/08/1997	11:39:00	Kilkenny Co. Co.	KK00100	Phelan's house, Bawhmore	P. Mullins	3/44	KIK50 22580 16610	Bawnmore	Group	15.4	1	5	7.3	826	0.08	1.04	< 0.01
Spring to Clomentagh	27/08/1997	12:05:00	Kilkenny Co. Co.	KK01500	Pagida Nuenna river, 50m SE of room	P. Mulling	3745	22520 16220	Utilingford/Johnstowr	Public	11.1	1	5	7.4	628	0.12	2.47	< 0.01
Borehole at Castlecomer Varni	27/08/1997	12:20:00	Kilkenny Co. Co.	KK00900	Tap in yard at Castlecomer Varns	P. Mullins P. Mullins	3740	25320 16320	Castlacomer Varns	Private	12.4	1	5	7.4	600	5.8	0.56	0.033
Spring at Paulstown Castle	27/08/1997	14:51:00	Kilkenny Co. Co.	KK00500	Spring at Paulstown Castle	P Mullins	3748	KIK46 \$ 660 570	Gowran/Goreshr /P-town	Public	11.9	1	5	7.3	636	0.72	1.13	< 0.01
Borehole at Rathcash	27/08/1997	15:12:00	Kilkenny Co. Co.	KK02000	Joe Pykes house Rathcash Clara	P Mullins	3749	KIK55 25870 15510	Rathcash	Group	16.9	1	5	7.4	709	0.07	0.49	< 0.01
Borehole at Clara	27/08/1997	15:30:00	Kilkenny Co. Co.	KK00400	At pumphouse	P. Mullins	3750	KIK41 25770 15530	Clara	Group	16.3	1	5	7.4	673	0.06	0.59	< 0.01
Dunmore	03/03/1998	11:10:00	Kilkenny Co. Co.		1. Billy O'Dwyers	C. Murray	1116		 Billy O'Dwyers 		9.8	1	10	7.6	473	3.7	0.03	0.073
Dunmore Group Scheme	19/05/1998	11:45:00	Kilkenny Co. Co.			P. Mullins	2330		<u> </u>		17.6	1	5	7.44	636			-
	19/05/1998	11:55:00	Kilkenny Co. Co.		Readymix	P. Mullins	2331				14.8	1	< 5	7.59	648			-
Borehole at Windgar	09/02/1999	09:30:00	Kilkenny Co. Co.	KK01900	Overflow from borehold	Redmond Bergir	815	24200 13580	Farm supply	Private			5	7.3	330	< 0.1		< 0.2
Spring at Clomantagh	17/02/1999	10:40:00	Kilkenny Co. Co.	KK00900	Beside Nuenna river, 50m SE of roac	C. Murray	998	23520 16320		Private	10	1	5	7.3	669	0.6	4	
Spring Toberpatrick Urlingford	17/02/1999	11:00:00	Kilkenny Co. Co.	KK01500	In chamber at source	C. Murray	999	KIK34 23000 16350	Urlingford/Johnstowr	Public	9.2	1	5	7.3	747	0.2	4.3	
Borehole at Bawnmore	17/02/1999	11:30:00	Kilkenny Co. Co.	KK00100	Phelan's house, Bawnmore	C. Murray	1000	KIK50 22580 16610	Bawnmore	Group	7	1	5	7.1	881	< 0.1	4.5	
Borehole at Galmoy	17/02/1999	12:00:00	Kilkenny Co. Co.	KK00200	Leahy's House, Galmoy	C. Murray	1001	KIK17 23020 17120	Galmoy	Group		1	5	7.3	776	0.4	2.1	
Borehole at Castlecomer Yarns	17/02/1999	12:50:00	Kilkenny Co. Co.	KK00300	Tap in yard at Castlecomer Yarns	C. Murray	1002	25360 17330	Castlecomer Yarns	Private	10.5	1	40	7.4	535	11.6	2	
Borehole at Dunmore	17/02/1999	14:05:00	Kilkenny Co. Co.	KK00700	C. Murray,s house, Dunmore.	C. Murray	1003	24910 16200	Dunmore	Group	7.7	1	5	7.3	663	< 0.1	1.7	< 0.2
Borehole at Kilkenny Mar	17/02/1999	15:00:00	Kilkenny Co. Co.	KK01300	Cattle holding shec	C. Murray	1004	25070 15670	Kilkenny Mart	Private	9.7	1	10	7.9	690	1.5	1.8	< 0.2
Borehole at Kilmanagh	17/02/1999	16:00:00	Kilkenny Co. Co.	KK01400	In pumphouse	C. Murray	1005	KIK45 23930 15250	Kilmanagh/Ballycuddihy	Group	7.3	1	5	7.6	658	< 0.1	3.9	< 0.2
Barabala at Windger	14/04/1999	10:47:00	Kilkenny Co. Co.	KK00800	Spring at Earlstand, Westcourt, Carlan	P. Mulling	1889	24200 12580	Callan Form sumply	Public	9.8	1	< 5	7.3	200	0.1		< 0.01
Springs at Bausheenmore	14/04/1999	12:12:00	Kilkenny Co. Co.	KK00500	At source (springs at Bausheenmore)	P Mullins	1890	KIK39 25520 14690	rann suppry	Private	9.6	1	< 5	7.5	772	0.2		< 0.01
Borehole at Bathcash	14/04/1999	14:00:00	Kilkenny Co. Co.	KK02000	Joe Pykes house Bathcash Clara	P Mullins	1892	KIK55 25870 15510	Bathcash	Group	9.0	1	< 5	7.3	722	< 0.1		< 0.01
Borehole at Clara	14/04/1999	14:18:00	Kilkenny Co. Co.	KK00400	At pumphouse	P Mullins	1893	KIK41 25770 15530	Clara	Group	9.4	1	< 5	7.3	695	< 0.1		< 0.01
	07/09/1999	10:20:00	Kilkenny Co. Co.		Kenny's Well, Kilkenny City	T. Doherty	4410			oroup								
Bennettsbridge	29/03/2000	14:16:00	Kilkenny Co. Co.		New well - feeding the infiltration gallery	P. Mullins	1688		Bennettsbridge	Public	10.6	1	< 5	7.6	727			< 0.003
					0 0 3				5									
Borehole at Kilmanagh	27/09/2000	10:30:00	Kilkenny Co. Co.	KK01400	In pumphouse	C. Murray	5048	KIK45 23930 15250	Kilmanagh/Ballycuddihy	Group	13.8			7.3	664	0.1		< 0.003
Borehole at Windgar	27/09/2000	12:10:00	Kilkenny Co. Co.	KK01900	Overflow from borehold	C. Murray	5049	24200 13580	Farm supply	Private	11.5			7.3	388	0.6		< 0.003
Borehole No.9, Thomastowr	27/09/2000	14:15:00	Kilkenny Co. Co.	KK01600	At pumphouse	C. Murray	5050	KIK32 25890 14160	Thomastown	Public	13.3			7.2	758	0.2		< 0.003
Springs at Bausneenmore	27/09/2000	14:50:00	Kilkenny Co. Co.	KK00500	At source (springs at Bausneenmore	C. Murray	5052	KIK39 25520 14690	Gourran/Gorachr /P. tourn	Private	11			7.1	- 18/	0.6		0.005
Spring at Clomentagh	27/09/2000	10:20:00	Kilkenny Co. Co.	KK00000	Basida Nuenna river, 50m SE of room	C. Murray	5032	22520 16220	Gowrall/Goresol./F-town	Privata	11.1	1	15	7.1	282	0.4		0.010
Spring Toberpatrick Urlingford	26/09/2000	10:20:00	Kilkenny Co. Co.	KK01500	In chamber at source	C. Murray	5020	KIK34 23000 16350	Urlingford/Johnstow/	Public	10.3	1	5	7.4	813			< 0.003
Borehole at Bawnmore	26/09/2000	11:05:00	Kilkenny Co. Co.	KK00100	Phelan's house Bawnmore	C Murray	5027	KIK50 22580 16610	Bawnmore	Group	13.5	1	5	7.3	863			< 0.003
Boronore at Barminore	20/03/2000	11.00.00	rememby eo. eo.	111100100	Thetail b house, Burninore	C. munuy	0020	1111120 222000 10010	Buttimore	oroup	10.0	•	2	1.5	005			0.005
Borehole at Galmoy	26/09/2000	12:15:00	Kilkenny Co. Co.	KK00200	Leahy's House, Galmoy	C. Murray	5029	KIK17 23020 17120	Galmoy	Group	14.7	1	5	7.4	789			< 0.003
Borehole at Castlecomer Yarns	26/09/2000	14:00:00	Kilkenny Co. Co.	KK00300	Tap in yard at Castlecomer Yarns	C. Murray	5030	25360 17330	Castlecomer Yarns	Private	12.2	1	20	7.5	578			0.036
Borehole at Dunmore	26/09/2000	14:25:00	Kilkenny Co. Co.	KK00700	C. Murray,s house, Dunmore.	C. Murray	5031	24910 16200	Dunmore	Group	14.7	1	5	7.4	668			< 0.003
Borehole at Dunmore S/G	26/09/2000	14.40.00	Kilkenny Co. Co	KK01000	Canteen at Dunmore Sand & Gravel	C. Murray	5032	KIK53 25000 16020	Dunmore Sand & Gravel	Private	12.4	1	5	7.6	660			< 0.003
Boronole ar Bannole 5/6	20/07/2000	11.10.00	remembry co. co.	Interiore		e. manay	5052	111135 25000 10020	Builliore build de blutter	Titvato	12.1	•	5					0.005
Borehole at Kilkenny Mar	26/09/2000	14:55:00	Kilkenny Co. Co.	KK01300	Cattle holding shec	C. Murray	5033	25070 15670	Kilkenny Mart	Private	14.6	1	5	7.6	708			< 0.003
Borehole at Clara	26/09/2000	15:35:00	Kilkenny Co. Co.	KK00400	At pumphouse	C. Murray	5034	KIK41 25770 15530	Clara	Group	11.6	1	5	7.4	667			< 0.003
Kiloshaun/Barna	03/10/2000	11:15:00	Kilkenny Co. Co./G.S.I.		GWS06	M. Daly	5218							7	663			0.015
Tubrid Lower	03/10/2000	11:40:00	Kilkenny Co. Co./G.S.I.		GWS14	M. Daly	5219							7.2	766			0.012
Balief Clomantagh	03/10/2000	12:00:00	Kilkenny Co. Co./G.S.I.		GWS03	M Daly	5220							73	794			0.007
Carring/Cardda shot	02/10/2000	12:00:00	Killenny Co. Co./C.S.I.		CW807	M D-h-	5220							7.4	727			0.007
Graine/Craddockstown	03/10/2000	12:30:00	Klikenny Co. Co./G.S.I.		Gw50/	M. Daiy	5221							7.4	121			0.006
Pilltown (PWS07)	03/10/2000	09:45:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5222							6.5	184			0.01
Tullahought (GWS16)	03/10/2000	10:30:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5223							6.3	194			0.007
Hugginstown (GWS10)	03/10/2000	11:30:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5224							6.7	448			0.005
Ahenure (PWS09)	03/10/2000	14:15:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5225							7.3	743			0.005

Source Sampling Date Sampling Time o-Phosphate Nitrate Nitrite Chloride Ca Hardness Alkalinity TCS Total Coliforms FCS Fecal Coliforms Sulphate Dry Residue Sus_Solids Magnesium Total Hardness Sodium Potassium Aluminium Iron Manganese Copper Zinc Chromium Lead mg/1 P mg/1 N mg/1 N mg/1 C1 mg/1 CaCO3 mg/1 CaCO3 per 100 ml per 100 ml mg/1 SO4 mg/1 mg/1 SO4 mg/1 mg/1 Mg mg/1 Mg mg/1 CaCO3 mg/1 Na mg/1 K mg/1 Al mg/1 F mg/1 Mn mg/1 Cu mg/1 Zn mg/1 Zn mg/1 P

Borehole at Dunmore	18/06/1997	11:45:00	< 0.02	10		19.7		240		999		999													
Dunmore	08/07/1997	14:50:00	< 0.02	< 0.1	0.003	20			<	100	<	100		Visible	19.5		10.2	0.6							
Dumment	08/07/1007	15.00.00	0.1	< 0.1	0.016	10			,	200		100		Vi-ih1-	10.2		15.2	0.4							
Dunmore	08/07/1997	15:00:00	0.1	< 0.1	0.016	19				200		100		VISIBLE	10.5		15.2	0.4							
Borehole at Kilmanagh	01/09/1997	10:24:00	< 0.02	4.6	< 0.004	17	270	287	>	100	>	100	7												
Spring at Westcourt	01/09/1997	11:17:00	< 0.02	4.3	< 0.004	22	262	310		15		5	12												
Borehole at Windgar	01/09/1997	11:54:00	0.02	2.1	< 0.004	15	144	151		6		2	4												
Springs at Bausheenmore	01/09/1997	13:36:00	0.04	5.6	0.004	26	270	304	>	100	>	100	17												
Borehole at Dunmore S/G	01/09/1997	14:17:00	< 0.02	< 0.1	< 0.004	21	252			480		9	36												
Borehole at Dunmore	01/09/1997	14:26:00	< 0.02	10.6	< 0.004	19	272	272		2		999	20												
Borehole at Kilkenny Mar	01/09/1997	15:13:00	0.09	0.5	0.018	3	64		>	160	>	120	< 1.5												
Borehole at Galmoy	27/08/1997	11:19:00	< 0.02	16.1	< 0.004	20	228	298		1		999	19												
Borehole at Bawnmore	27/08/1997	11:39:00	< 0.02	11	< 0.004	23	316	363	>	80		7	17												
Spring Toberpatrick Urlingford	27/08/1997	12:05:00	< 0.02	8.1	< 0.004	22	292	332		51		9	17												
Spring at Clomantagh	27/08/1997	12:20:00	< 0.02	7.4	0.001	18	236	276	>	160	>	120	10												
Borehole at Castlecomer Yarns	27/08/1997	14:00:00	< 0.02	0.13	0.004	20	144	262		999		999	25												
Spring at Paulstown Castle	27/08/1997	14:51:00	< 0.02	()	< 0.004	25	232	256	>	160	>	120	17												
Borenole at Rathcash	27/08/1997	15:12:00	< 0.02	6.2	< 0.004	24	212	314		999		999	15												
Dunmara	2//08/1997	13:30:00	0.02	8.7	< 0.004	17.6	212	285	_	29		18	15												
Dunmore Group Scheme	10/05/1998	11:45:00	0.011	9.4		10		200	<u>`</u>	900	<u>`</u>	000													
Dunnore Group Scheme	19/05/1998	11:55:00	0.011	0.4		22				12		999													
Borehole at Windgar	09/02/1999	09:30:00	0.05	2	< 0.003	13.3	93	148		999		999	61		13.9		7.2								
Spring at Clomantagh	17/02/1999	10:40:00	< 0.02	61	< 0.003	15.4	,,,	299		10		2	9.5	Not Vis	10.7		7.2								
Spring Toberpatrick Urlingford	17/02/1999	11:00:00	< 0.04	5.7	< 0.003	17.5		340		13		1	10.1	Not Vis.											
Borehole at Bawnmore	17/02/1999	11:30:00	< 0.04	7.9	< 0.003	17.9		416		999		999	11.2	Not Vis.											
Borehole at Galmoy	17/02/1999	12:00:00	< 0.04	11.5	< 0.003	24.5		317		29		999	13.3	Not Vis.											
Borehole at Castlecomer Yarns	17/02/1999	12:50:00	< 0.04	0.6	< 0.003	16.7		241		999		999	18.4	Not Vis.											
Borehole at Dunmore	17/02/1999	14:05:00		8.9	< 0.003	21.3	303	262		999		999	15.1	Not Vis.	4.5		9	0.9							
Borehole at Kilkenny Mar	17/02/1999	15:00:00	< 0.04	6.6	< 0.003	18.8	273	270		9		999	37.9	Not Vis.	14.1		11.2	1.3							
Borehole at Kilmanagh	17/02/1999	16:00:00	< 0.04	4	< 0.003	15.2	276	308		999		999	9.7	Not Vis.	12		9.2	0.8							
Spring at Westcourt	14/04/1999	10:47:00	< 0.04	4.2	< 0.004	20	288	330		1		1	11.4		24.2		8.9	0.6							
Borehole at Windgar	14/04/1999	11:14:00	< 0.04	2.2	< 0.004	13	138	174		999		999	5.6		17.9		6.6	0.7							
Springs at Bausheenmore	14/04/1999	12:12:00	< 0.04	5.7	< 0.004	23	272	360		74		2	15		30.5		8.3	2.3							
Borehole at Rathcash	14/04/1999	14:00:00	< 0.04	6.7	< 0.004	21	286	326		999		999	14		22.3		7.9	0.8							
Borenole at Clara	14/04/1999	14:18:00	< 0.04	8.5	< 0.004	19	288	318		45		2	12.8		17.1		7.8	1							
Ponnattahridga	20/02/2000	10:20:00	< 0.006	5.1		22				999		999		Not Via											
Benneusbridge	29/03/2000	14:16:00	< 0.006	5.1		22				999		999		INOU VIS.											
Borehole at Kilmanagh	27/09/2000	10:30:00	< 0.006	3.7	< 0.001	14	288		>=	43		999	13		15	349	11	1.2		< 0.06	< 0.02		0.026		
Borehole at Windgar	27/09/2000	12:10:00	0.019	2.4	< 0.001	14	143					999	9.1		15	204	7.9	1.4		< 0.06	< 0.02		0.024		
Borehole No.9, Thomastowr	27/09/2000	14:15:00	0.032	5.8	< 0.001	31	293			8		1	19		22	383	18	3.5		< 0.06	< 0.02		0.138		
Springs at Bausheenmore	27/09/2000	14:50:00	0.014	6	< 0.001	23	308		>	80	>	60	20		30	431	10	3.9		< 0.06	< 0.02		0.022		
Spring at Paulstown Castle	27/09/2000	15:40:00	0.008	4.7	0.007	23	290		>	80	>	60	18		11	335	11	3.4		< 0.06	< 0.02		0.021		
Spring at Clomantagh	26/09/2000	10:20:00	0.012	1.5	0.007	6.9	83		>	80	>	60	7.8		2.4	92.8	6	6.5		0.086	< 0.02		0.189		
Spring Toberpatrick Urlingford	26/09/2000	10:40:00	0.009	7.1	0.011	20	338		>	80	>	60	15		19	416	9.4	5		0.106	< 0.02		0.48		
Borehole at Bawnmore	26/09/2000	11:05:00	< 0.006	6.7	< 0.001	18	348		>=	50		28	16		30	471	8.1	3.4		0.114	< 0.02		0.421		
Borehole at Galmoy	26/09/2000	12.15.00	< 0.006	8.2	< 0.001	21	305			000		000	18		27	416	9.6	1.4		0.082	< 0.02		0.258		
Borehole at Castlecomer Yarns	26/09/2000	14:00:00	0.077	11	0.003	17	150			7		999	25		17	220	43	1.7		0.664	0.536		0.152		
Borehole at Dunmore	26/09/2000	14:25:00	< 0.006	8.9	< 0.001	23	308			21	<	1	18		3.1	320	9.9	1.4		< 0.06	< 0.02		0.102		
						-	*			-															
Borehole at Dunmore S/G	26/09/2000	14:40:00	< 0.006	0.67	0.002	19	278		>=	44		999	38		14	294	12	1.4		0.063	0.273		0.076		
Deach als at Killennes Man	26/00/2000	14.55.00	< 0.000	6.2	< 0.001	10	205			47		2	20		16	260	12	1.0		< 0.06	< 0.02		0.151		
Borehole at Klikenny Mar	26/09/2000	14:33:00	< 0.006	5.0	< 0.001	18	295			4/		000	39		16	360	0.7	1.9		< 0.06	< 0.02		0.151		
Kiloshaun/Barna	03/10/2000	11:15:00	0.03	5.9	< 0.001	18	360	305	>	80	>	80	7.8		10.4	402	9.7	2.1	< 0.05	0.075	0.02	0.004	0.008	0.012	< 0.001
Renositadin Darita	05/10/2000	11.15.00	0.025	5.7	- 0.001	14	500	505	<i>,</i>	00	<i>,</i>	00	7.0		10.4	402	0.7	2.1	- 0.05	0.075	0.01	0.004	0.202	0.012	- 0.001
Tubrid Lower	03/10/2000	11:40:00	0.009	8.5	< 0.001	18	413	353		7		1	10.6		15.5	476	7.7	0.6	< 0.05	0.097	0.003	0.005	0.463	0.034	< 0.001
Balief Clomantagh	03/10/2000	12:00:00	0.01	8.5	0.01	18	427	383		62		58	9.6		14.2	485	9.4	5	< 0.05	0.078	0.005	0.005	0.343	0.028	< 0.001
Graine/Craddockstown	03/10/2000	12:30:00	0.007	5.2	< 0.01	15	321	362		999		999	10.7		37.1	7.4	< 0.2		< 0.05	< 0.05	0.002	0.009	0.208	0.019	< 0.001
Grame/Craduockstown	55/10/2000	12.50.00	0.007	J.4	~ 0.01	1.5	241	502		227		227	10.7		57.1	/.4	~ 0.5		~ 0.05	~ 0.05	0.002	0.009	0.200	0.019	~ 0.001
Pilltown (PWS07)	03/10/2000	09:45:00	0.03	2.9	0.003	14.3	40	53		28		999	4.9		3.1	52.7	8	1.4	< 0.05	< 0.05	0.002	< 0.001	0.124	0.009	< 0.001
Tullahought (GWS16)	03/10/2000	10:30:00	0.027	7.1	< 0.001	17	35	26		2		999	9.8		5.5	57.6	11.4	< 0.3	< 0.05	< 0.05	0.002	0.011	0.084	0.005	< 0.001
Hugginstown (GWS10)	03/10/2000	11.30.00	0.026	43	< 0.001	15	193	176	>	80	>	60	14.5		84	227	10.5	59	< 0.05	< 0.05	< 0.001	0.011	0.071	0.006	< 0.001
11056mile (0 (1010)	55, 10, 2000		0.020		0.001				-				17.5		0.4	221	.0.5	5.7	. 5.05	. 0.05	0.001	0.011	0.071	0.000	0.001
Ahenure (PWS09)	03/10/2000	14:15:00	< 0.006	2.6	< 0.001	19	348	347		14		999	16.5		28.3	464	8.8	1.7	< 0.05	< 0.05	0.739	0.009	0.051	0.007	< 0.001

Source	Sampling Date	Sampling Time	Cadmium M	Aercury	Nickel	Fluoride (OMCTSiloxane	Comments1	Comments2	Comments3
Danahala at Dunmani	18/06/1007	11.45.00	mg/I Cd n	ng/I Hg	mg/l Nı	mg/l F	µg/l			
Dunmore	08/07/1997	11:45:00						Total Coliforms present. Accurate count not possible	Suspended Solids.	
	00/05/1005	15.00.00						due to	Commended Calida	
Dunmore	08/07/1997	15:00:00						due to	Suspended Solids.	
Borehole at Kilmanagh	01/09/1997	10:24:00								
Spring at Westcourt	01/09/1997	11:17:00								
Borehole at Windgap	01/09/1997	11:54:00								
Borehole at Dunmore S/G	01/09/1997	14:17:00								
Borehole at Dunmore	01/09/1997	14:26:00								
Borehole at Kilkenny Mar	01/09/1997	15:13:00								
Borehole at Galmoy	27/08/1997	11:19:00								
Spring Toberpatrick Urlingford	27/08/1997	11:39:00								
Spring Toberpatrick Orningtore	27/08/1997	12:20:00								
Borehole at Castlecomer Yarns	27/08/1997	14:00:00								
Spring at Paulstown Castle	27/08/1997	14:51:00								
Borehole at Rathcash	27/08/1997	15:12:00								
Dupmore	2//08/199/	15:30:00								
Dunmore Group Scheme	19/05/1998	11:45:00								
	19/05/1998	11:55:00								
Borehole at Windgap	09/02/1999	09:30:00						Sodium and calcium for guide only.		
Spring at Clomantagh	17/02/1999	10:40:00				< 0.1				
Spring Toberpatrick Urlingford	17/02/1999	11:00:00				< 0.1				
Borehole at Galmov	17/02/1999	12:00:00				< 0.1				
Borehole at Castlecomer Yarns	17/02/1999	12:50:00				< 0.1				
Borehole at Dunmore	17/02/1999	14:05:00				< 0.1				
Borehole at Kilkenny Mar	17/02/1999	15:00:00				< 0.1				
Borehole at Kilmanagh	17/02/1999	16:00:00				< 0.1				
Borehole at Windgar	14/04/1999	11:14:00				< 0.1				
Springs at Bausheenmore	14/04/1999	12:12:00				< 0.1				
Borehole at Rathcash	14/04/1999	14:00:00				< 0.1				
Borehole at Clara	14/04/1999	14:18:00				< 0.1		County for the staried arised an along a sub-		
Ponnattabridga	07/09/1999	10:20:00						This is a sample from a new well that feeds the old	Bennettsbridge water supply	
Benneusbridge	29/03/2000	14.10.00						infiltration gallery for	Beilieusonage water suppry.	
Borehole at Kilmanagh	27/09/2000	10:30:00					3.2	· · · · · ·	VOC analysis results on separate sheet.	
Borehole at Windgar	27/09/2000	12:10:00					2.1	Total Coliforms not reported.	VOC analysis results on separate sheet.	
Springs at Bausheenmore	27/09/2000	14:15:00					1.8		voc analysis results on separate sneet.	
Spring at Paulstown Castle	27/09/2000	15:40:00					10.3		VOC analysis results on separate sheet.	
Spring at Clomantagh	26/09/2000	10:20:00					0.6		VOC analysis results on separate sheet.	
Spring Toberpatrick Urlingford	26/09/2000	10:40:00					1.7		VOC analysis results on separate sheet.	
Borehole at Bawnmore	26/09/2000	11:05:00					0.7	Background interference on Total Coliform plate.	VOC analysis results on separate sheet.	
Borehole at Galmov	26/09/2000	12:15:00					2.4		VOC analysis results on separate sheet.	
Borehole at Castlecomer Yarns	26/09/2000	14:00:00					0.6		VOC analysis results on separate sheet.	
Borehole at Dunmore	26/09/2000	14:25:00					1.1	Small underdeveloped colonies on Total Coliform	VOC analysis results on separate sheet.	
Borehole at Dunmore S/G	26/09/2000	14:40:00					2.2	Background interference on Total Coliform plate.	VOC analysis results on separate sheet.	
Borehole at Kilkenny Mar	26/09/2000	14:55:00					1.3		VOC analysis results on separate sheet.	
Borehole at Clara	26/09/2000	15:35:00					2.9		VOC analysis results on separate sheet.	
Kiloshaun/Barna	03/10/2000	11:15:00	< 0.0001 <	0.0001	0.008	< 0.1		Samples as part of Kilkenny Groundwater Protection		
Tubrid Lower	03/10/2000	11:40:00	< 0.0001 <	0.0001	0.015	< 0.1		Samples as part of Kilkenny Groundwater Protection		
Balief Clomantagh	03/10/2000	12:00:00	< 0.0001 <	0.0001	0.012	< 0.1		Samples as part of Kilkenny Groundwater Protection Scheme		
Graine/Craddockstown	03/10/2000	12:30:00	< 0.0001 <	0.0001	0.007	< 0.1		Samples as part of Kilkenny Groundwater Protection Scheme		
Pilltown (PWS07)	03/10/2000	09:45:00	< 0.0001 <	0.0001	0.004	< 0.1		Samples as part of Kilkenny Groundwater Protection Scheme.		
Tullahought (GWS16)	03/10/2000	10:30:00	< 0.0001 <	0.0001	0.002	< 0.1		Samples as part of Kilkenny Groundwater Protection Scheme.		
Hugginstown (GWS10)	03/10/2000	11:30:00	< 0.0001 <	0.0001	0.002	< 0.1		Samples as part of Kilkenny Groundwater Protection Scheme.		
Ahenure (PWS09)	03/10/2000	14:15:00	< 0.0001 <	0.0001	0.024	< 0.1		Samples as part of Kilkenny Groundwater Protection		

Source	Sampling Date	Sampling Time	То	Ref No	Sampling Location	Taken By	Lab No EPARef	Stn Grid Ref	Water Supply	Public/Group/Private	Temperature O	dour C	olour 1 Iazen	рН С	Conductivity µS/cm	Turbidity NTU	TOC Ammonia mg/1C mg/1N
Callan (PWS06)	03/10/2000	15:00:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5226						,	7.3	705		0.004
Windgap (GWS17)	03/10/2000	12:45:00	Kilkenny Co. Co./G.S.I.			Ruth Buckley	5227						,	6.7	267		0.007
Highrath (GWS11)	04/10/2000	12:00:00	Kilkenny Co. Co./G.S.I.		Highrath (GWS11)	M. Daly	5260					1	5 '	7.1	999		0.024
Maddoxtown (GWS12)	04/10/2000	12:30:00	Kilkenny Co. Co./G.S.I.		Maddoxtown (GWS12)	M. Daly	5261					1	5 '	7.2	931		0.022
Glenmore Spring (PWS02-1)	04/10/2000	11:10:00	Kilkenny Co. Co./G.S.I.		Glenmore Spring (PWS02-1)	Ruth Buckley	5266						5 1	6.4	259		0.018
Glenmore Spring (PWS02-2)	04/10/2000	13:25:00	Kilkenny Co. Co./G.S.I.		Glenmore Spring (PWS02-2)	Ruth Buckley	5267										
Cuffesgrange No. 1 (GWS13)	02/10/2000	11:00:00	Kilkenny Co. Co./G.S.I.		Cuffesgrange No. 1 (GWS13)	M. Daly	5094					1	5 '	7.3	772		0.011
Ballymack (GWS02)	02/10/2000	11:20:00	Kilkenny Co. Co./G.S.I.		Ballymack (GWS02)	M. Daly	5095					1	5 '	7.2	800		0.004
Newtown Kells (GWS04)	02/10/2000	11:45:00	Kilkenny Co. Co./G.S.I.		Newtown Kells (GWS04)	M. Daly	5096					1	5 '	7.3	789		0.007
Caherlesk Goolaghmore	02/10/2000	12:20:00	Kilkenny Co. Co./G.S.I.		Caherlesk Goolaghmore	M. Daly	5097					1	5 (6.8	459		0.008
Paulstown (PWS7)	04/10/2000	10:30:00	Kilkenny Co. Co./G.S.I.		Paulstown (PWS7)	V. Fitzsimons	5262					1	5 '	7.3	676		0.016
Tullaroan (PWS5)	04/10/2000	11:30:00	Kilkenny Co. Co./G.S.I.		Tullaroan (PWS5)	V. Fitzsimons	5263					1	5 '	7.5	616		0.004
Urlingford (PWS5-S)	04/10/2000	12:30:00	Kilkenny Co. Co./G.S.I.		Urlingford (PWS5-S)	V. Fitzsimons	5264					1	5 '	7.2	803		0.007
Urlingford (PWS5-R)	04/10/2000	12:40:00	Kilkenny Co. Co./G.S.I.		Urlingford (PWS5-R)	V. Fitzsimons	5265						10 '	7.3	825		0.094
Thomastown BH1 (PWS01-1)	02/10/2000	10:30:00	Kilkenny Co. Co./G.S.I.		Thomastown BH1 (PWS01-1)	Ruth Buckley	5114						5	7	466		0.003
Thomastown BH2 (PWS01-2)	02/10/2000	10:50:00	Kilkenny Co. Co./G.S.I.		Thomastown BH2 (PWS01-2)	Ruth Buckley	5115						5 '	7.3	748		< 0.003
Bennettsbridge BH (PWS04-B)	02/10/2000	12:10:00	Kilkenny Co. Co./G.S.I.		Bennettsbridge BH (PWS04-B)	Ruth Buckley	5116						5 '	7.3	721		< 0.003
Bennettsbridge River (PWS04-R)	02/10/2000	12:15:00	Kilkenny Co. Co./G.S.I.		Bennettsbridge River (PWS04-R)	Ruth Buckley	5117						175	8	447		0.022
Bennettsbridge Gravel (PWS04- G)	02/10/2000	12:25:00	Kilkenny Co. Co./G.S.I.		Bennettsbridge Gravel (PWS04-G)	Ruth Buckley	5118						20	7.5	563		0.006
Bennettsbridge Mixed (PWS04- M)	02/10/2000	12:50:00	Kilkenny Co. Co./G.S.I.		Bennettsbridge Mixed (PWS04-M)	Ruth Buckley	5119					1	5	7.4	681		< 0.003
Kilree Stoneyford (GWS08)	02/10/2000	15:00:00	Kilkenny Co. Co./G.S.I.		Kilree Stoneyford (GWS08)	Ruth Buckley	5120					1	5	7.1	866		< 0.003
Spring at Clomantagh	12/02/2001	11:00:00	Kilkenny Co. Co.	KK00900	Beside Nuenna river, 50m SE of road	Italii Buckley	633	23520 16320		Private	9.7	-	- ,	7.2	615	1.4	0.007

Source	Sampling Date	Sampling Time	o-Phosphate mg/l P	Nitrate mg/l N	Nitrite mg/l N	Chloride mg/l Cl	Ca Hardness mg/l CaCO3	Alkalinity mg/l CaCO3	TCS	Total Coliforms per 100 ml	s FCS	Fecal Coliform per 100 ml	s Sulphate mg/l SO4	Dry Residue mg/l	Sus_Solids mg/l	Magnesium mg/l Mg	Total Hardness mg/l CaCO3	Sodium mg/l Na	Potassium mg/l K	Aluminium mg/l Al	Iron mg/l Fe	Manganese mg/l Mn	Copper mg/l Cu	Zinc mg/l Zn	Chromium mg/l Cr	1 Lead mg/l Pb
Callan (PWS06)	03/10/2000	15:00:00	0.006	4.1	< 0.001	19	334	336		24		10	11.6	0	0	25.1	437	10.1	0.9	< 0.05	< 0.05	0.0014	< 0.001	0.046	0.004	< 0.001
Windgap (GWS17)	03/10/2000	12:45:00	0.062	9.6	< 0.001	15	99.7	64		1		999	6.8			2.8	75.5	7.8	< 0.3	< 0.05	< 0.05	< 0.001	< 0.001	0.039	0.003	< 0.001
Highrath (GWS11)	04/10/2000	12:00:00	0.023	5.3	0.003	49	443	436	>	80	>	60	13.5			30	566	11	5.6	< 0.05	< 0.05	0.003	0.004	0.027	0.024	< 0.001
Maddoxtown (GWS12)	04/10/2000	12:30:00	0.015	11.7	< 0.001	25	383	404		17		4	18.6			29.1	502	11.1	3.3	< 0.05	< 0.05	< 0.001	< 0.001	0.003	0.021	< 0.001
Glenmore Spring (PWS02-1)	04/10/2000	11:10:00	< 0.006	9.6	0.001	22	44	38		45		1	12.8			11.5	91.3	10.9	3.8	< 0.05	< 0.05	< 0.001	< 0.001	0.02	0.003	< 0.001
Glenmore Spring (PWS02-2)	04/10/2000	13:25:00								36		1														
Cuffesgrange No. 1 (GWS13)	02/10/2000	11:00:00	0.02	4.2	0.009	19	362	362	>	80		29	13.1			25	464	11.2	3.6	< 0.05	< 0.05	< 0.001	0.005	0.037	0.005	< 0.001
Ballymack (GWS02)	02/10/2000	11:20:00	< 0.006	6.4	< 0.001	23	345	365		52		7	13.9			36.2	494	11.7	1.5	< 0.05	< 0.05	< 0.001	< 0.001	0.035	0.005	< 0.001
Newtown Kells (GWS04)	02/10/2000	11:45:00	0.006	5.6	< 0.001	26	359	367	>	80		7	13			29.2	479	12.5	1.5	< 0.05	< 0.05	< 0.001	0.004	0.049	0.003	< 0.001
Caherlesk Goolaghmore	02/10/2000	12:20:00	0.008	5.3	< 0.001	19	197	178		51		8	10			15.5	260	9.2	2.3	< 0.05	< 0.05	< 0.001	0.003	0.046	0.004	< 0.001
Paulstown (PWS7)	04/10/2000	10:30:00	0.008	5.7	0.008	22	330	286	>	80	>	60	12.8			11.5	377	10.9	3.8	< 0.05	< 0.05	< 0.001	< 0.001	0.014	0.016	< 0.001
Tullaroan (PWS5)	04/10/2000	11:30:00	< 0.006	2.9	< 0.001	14	301	284		999		999	7.4			10	342	8.2	1.4	< 0.05	< 0.05	< 0.001	< 0.001	< 0.001	0.015	< 0.001
Urlingford (PWS5-S)	04/10/2000	12:30:00	0.006	8	0.002	18	377	369	>	80	>	60	10.7			18.5	453	8	5.9	< 0.05	< 0.05	< 0.001	< 0.001	< 0.001	0.012	< 0.001
Urlingford (PWS5-R)	04/10/2000	12:40:00	0.039	7.2	0.056	19	375	375		1080		370	15.9			13.5	430	10.8	1.1	< 0.05	< 0.05	< 0.001	< 0.001	0.013	0.021	< 0.001
Thomastown BH1 (PWS01-1)	02/10/2000	10:30:00	0.012	4.9	< 0.001	18	186	105		8		999	10.4			15.5	249	11	1.3	< 0.05	< 0.05	< 0.001	0.005	0.05	0.004	< 0.001
Thomastown BH2 (PWS01-2)	02/10/2000	10:50:00	0.037	6.2	< 0.001	30	325	320		6		1	16			22.5	417	17.6	3.3	< 0.05	< 0.05	0.001	0.013	0.046	0.006	< 0.001
Bennettsbridge BH (PWS04-B)	02/10/2000	12:10:00	< 0.006	4.3	0.002	24	320	317		17		999	28.5			25.4	424	16.1	2.3	< 0.05	< 0.05	0.004	< 0.001	0.034	0.002	< 0.001
Bennettsbridge River (PWS04-R)	02/10/2000	12:15:00	0.083	2.1	0.014	16	223	185		42000		5600	15.8			7.8	255	10.3	4.4	0.119	0.279	0.02	0.003	0.037	0.004	< 0.001
Bennettsbridge Gravel (PWS04-	02/10/2000	12:25:00	0.05	1.1	0.051	22	260	253	>=	76		4	21.2			10.1	301	18.3	3.8	< 0.05	< 0.05	0.066	0.037	0.042	0.005	< 0.001
Bennettsbridge Mixed (PWS04-	02/10/2000	12:50:00	0.02	4.5	0.009	23	311	291		104		5	23			19.2	390	16.7	3.3	< 0.05	< 0.05	0.025	0.002	0.046	0.006	< 0.001
Kilree Stoneyford (GWS08)	02/10/2000	15:00:00	0.131	15.4	< 0.001	19	397	370	>	80		60	11.3			29.9	520	11.4	3	< 0.05	< 0.05	< 0.001	0.008	0.039	0.002	< 0.001
Spring at Clomantagh	12/02/2001	11:00:00	0.015	4.1	0.002	14	305	270		15		12	34.9			6.5	331	5.5	1.3	. 0.00	< 0.01	< 0.02	0.000	0.031	0.002	. 0.001

Appendix VI: Summary of trends in water quality over time for selected supply sources in Kilkenny

Fig 8.2-Bennettsbridge Key indicators of Agricultural and Domestic GroundwaterContamination.

